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Abstract

Many real-world scenes contain a dynamic range that exceeds conventional display tech-

nology by several orders of magnitude. Through the combination of several existing

technologies, new high dynamic range displays, capable of reproducing a range of in-

tensities much closer to that of real environments, have been constructed. These benefits

come at the cost of more optically complex devices; involving two image modulators,

controlled in unison, to display images. We present several methods of rendering images

to this new class of devices for reproducing photometrically accurate images. We discuss

the process of calibrating a display, matching the response of the device with our ideal

model. We then derive series of methods for efficiently displaying images, optimized for

different criteria and evaluate them in a perceptual framework.
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Chapter 1

Introduction

The high dynamic range (HDR) rendering pipeline has been the subject of considerable

interest from the computer graphics community in recent years. The intensities and dy-

namic ranges found in many scenes and applications vastly exceed those of conventional

imaging techniques, and the established practices and methods of addressing those im-

ages are insufficient.

Existing digital cameras can faithfully record images over a wide range of intensities,

but are significantly limited in the dynamic range. Dynamic range is the ratio of brightest

to darkest value that they can record simultaneously. Even given a means of generating

or acquiring such data, conventional file formats cannot accurately store it. The same is

true with monitors; conventional display technologies can give a correct impression of

relative luminance over a limited luminance range, but they are limited in their ability to

reproduce values that are bright or dark enough to accurately represent anything more

than a fraction of the luminances encountered in ordinary scenes. A standard display

does not have nearly the level of contrast, or the dynamic range, to directly reproduce

many real-world scenes.

Researchers have developed additions and modifications to existing methods of ac-

quiring, processing, and displaying images to accommodate contrasts which exceed the

limitations of conventional, low dynamic range (LDR) techniques and devices. Methods

exist for acquiring HDR images and video from multiple LDR images. First investigated

by Mann & Picard [44], these techniques were introduced to graphics by Debevec &

Malik [16]. Additional work has been done by Mitsunaga & Nayar [50] and Robertson

et al [63] on still images, while Kang et al [34] have applied the methods to video.

File formats have been designed to accommodate the additional data storage re-
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quirements. The OpenEXR [33] format efficiently stores data without complicated en-

coding for real-time applications, and JPEG-HDR [78] encodes the additional information

while maintaining transparent, backwards-compatible support for existing applications.

Additional formats have been developed for efficiently encoding images by storing only

perceptually-relevant information. The work on images by Larson [37] and on video by

Mantiuk et al [46] are examples of formats that can significantly compress image data

while remaining perceptually lossless. Techniques have been developed to compress the

dynamic range of images while preserving features of the original. These techniques,

known collectively as tonemapping operators, allow the display of HDR images on con-

ventional monitors with contrast ratios of about 300 : 1, including conventional Cathode

Ray Tube (CRT), Liquid Crystal Display (LCD), and projector-based displays.

While digital image manipulation and storage technologies can adequately address

HDR images, complications in the acquisition and display stages remain. Neither com-

modity cameras nor commodity display devices fully support HDR imaging. The tradi-

tional HDR acquisition methods mentioned above make assumptions about the content,

require multiple exposures, as well as a static scene. Likewise, tonemapping operators

can map scene details into a range displayable on a conventional display, but cannot

fully reproduce the scene. There is an inevitable loss of information in the process, and

the lower intensities of a conventional display cannot completely reproduce the same

sensation as the original scenes.

Recent advances in image sensor technology are providing a direct means of accom-

plishing these goals without those restrictions. New cameras are capable of capturing

larger dynamic ranges in a single exposure than can existing models. While still specialty

items, these devices, such as the HDRC VGAx [30] camera, the Thompson Viper Film-

Stream [72] video camera, and the SpheronVR SpheroCamHDR [68] panoramic camera,

are becoming more common. Most relevant to this thesis, high dynamic range display

systems have been developed to accurately reproduce a much wider range of lumi-

nances. The work done by Ward [77] and Seetzen et al [64, 65] has provided devices

that vastly exceed the dynamic range of conventional displays. These devices are capa-

ble of higher intensity whites, and lower intensity blacks while maintaining adequately

low quantization across entire luminance range.
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No single known material is capable of reproducing the luminances and bit depths in

the resolutions and form factors required for displaying HDR images, and a fundamental

change in how output device display images is required. A conventional display uses a

single high resolution LCD panel as an optical filter in front of a uniform light source, like

a fluorescent lamp. The limited contrast of a LCD panel requires an additional optical

modulator to be added, and the design of an HDR display accomplishes this by replacing

the uniform light with a second low resolution, high contrast display. There are many

ways to create the display, but in practice either a projector or a grid of ultra-bright LEDs

is used. By simultaneously controlling the LCD panel and the second display, the two

work in tandem to produce the final image.

This new configuration offers many benefits over conventional displays, but presents

several additional challenges. If one desires to alter the luminance of a pixel by using the

low resolution backlight, the surrounding pixels are altered as well. Fundamentally, this

limitation implies that HDR displays cannot exactly reproduce the luminances of a real

scene. However, since the display is intended to be viewed by human subjects, exact

reproduction is not necessary. As long as the display introduces less distortion than the

human visual system, the original image and the displayed image will appear the same.

Unlike conventional displays, the pixels in the HDR display are no longer completely

independent of one another. It is therefore necessary to employ image-processing algo-

rithms to factor an HDR into values to send to the LCD panel, and to the low resolution

back plane, respectively. This thesis addresses the challenge of: given an image as input,

compute a matching set of front and back images such that the optics of the display

combine to produce the same observed image as the original.

Many real-world scenes contain a dynamic range that exceeds conventional display

technology by several orders of magnitude. Through the combination of several ex-

isting technologies, new high dynamic range displays have been constructed. While

these displays are capable of reproducing intensity ranges comparable to some real en-

vironments, their benefits come at a cost. The hardware setup requires a more optically

complex device; reproducing pictures involves two sets of controllable image elements

to be operated simultaneously.
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1.1 Image Processing for HDR Displays

The goal of the work presented here is to overcome the challenges of the HDR display

hardware design and accurately reproduce photometric images. Achieving this goal

entails designing efficient algorithms to produce the best images possible, characterizing

the monitor, and calibrating it to reproduce the same appearance it is given as input.

The full realization of this goal is a monumental challenge, drawing upon work from

numerous areas of research, and cannot be resolved within the scope of a single thesis.

In order to verify the accuracy of the reproduction, the results would need to be validated

to match to a human viewer, and much of the required perceptual foundation has not

been completely explored.

We will only address the challenge of accurately reproducing perceived luminances.

Due to the vast scope, other areas such as color, motion, and spatial frequency will not

be fully resolved. We touch on the topics of motion and color, but our coverage is not

comprehensive. We will present methods of processing images that address the inherent

challenges of the HDR display within the set of constraints that the hardware configu-

ration places. We will calibrate those methods to accurately reproduce luminance, and

draw upon psychophysical studies to verify the results. The remainder of this thesis is

structured as follows:

Related Work: Chapter 2 covers the topics related to the work presented. This collec-

tion of topics provides key insights into understanding our methods and their evaluation.

The four areas discussed are: aspects of perception and psychophysics, the tonemapping

operators conventionally used to view HDR images, the physical construction of the HDR

display systems, and calibration methods used for LDR displays.

Rendering Algorithms: Chapter 3 describes the task of rendering images and details

the difficulties faced in doing so. We will present the idealized model of the display

hardware that will be the foundation of our work, and will discuss the general high-level

view of the problem and the areas of optimization. Finally, several efficient algorithms

for achieving these goals will detailed.
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Characterization and Calibration: Chapter 4 begins with an enumeration of the dif-

ferences between the real display hardware and the idealized model assumed in the

algorithms. Paying specific attention to the complexities introduced by the low reso-

lution backlight, we detail the measurements required to correct for those disparities

and calibrate the output, and how those measurements are incorporated into the image

processing methods. We present the measurements taken in addition to the calibration

process.

Evaluation: Chapter 5 presents the results of the work and evaluates them using a

perceptually-based metric. Due to the limitations of the hardware design, the HDR

display is not capable of reproducing the luminance of the original scene at every pixel.

Because the stated goal is to reproduce the appearance of the original to a human,

instead of an exact photometric representation, the output of the display is only required

to be sufficiently close so that an observer cannot discern any differences. Improvements

are unnecessary if they cannot be discerned by a human observer, and metrics derived

from human perceptual studies provide a meaningful bound. Movies do not exceed

30Hz and interactive applications do not exceed 72Hz because viewers cannot discern

the difference. Similarly, as displays approach the simultaneous contrast perception of

the human visual system (HVS), it becomes necessary to analyze them in terms of the

observer’s abilities.

1.2 Photometric Imaging

While high dynamic range images are not subject to the limitations of intensity and

dynamic range associated with conventional images, they share many of the same am-

biguities. A survey of HDR images quickly reveals that there is no consensus on what

the pixel values mean in terms of real luminance values. The data is still effectively rel-

ative, and often scaled arbitrarily. It is not uncommon to find an image of a nighttime

scene with pixel values orders of magnitude greater than the pixel values in an image

representing a sunny scene.

Ideally, in addition to faithfully representing ratios comparable to the original scene,
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the image should contain enough information to determine the luminance values of

that scene from the pixels in the image. In order to properly record luminance, pixel

intensities must be linearly stored in absolute units of light, such as candela-per-meter-

squared (cd/m2). In order to properly record color, additional information must be

included to describe the gamut in which the colors exist. This accuracy implies measuring

the acquisition device to quantify its characteristics, and providing a mapping of pixel

values back to the recorded luminance. This extra set of constraints is commonly termed

photometric imaging, as it directly relates pixel values to the measured photons of light

in the original scene.

Work has already been done by Krawczyk et al [35] on calibrating HDR acquisition

devices to encode photometric data. A natural extension of this type of acquisition is

to accurately reproduce photometric images, performing the same calibration on display

devices, which was not possible in the past. Real scenes have an average dynamic range

of 3 orders of magnitude. Both daytime and nighttime scenes have roughly the same

contrast, but vastly different mean luminances. Intensity and dynamic range limitations

make this level of calibration impossible on conventional displays, however the HDR

display can represent contrasts of this magnitude and has a peak intensity comparable

to that of indoor scenes. It is the first display able to reproduce original scene luminances,

thus providing strong motivation to photometrically calibrate its output.

1.3 Terminology

Unfortunately, there is often confusion about the terminology used to describe the quan-

tities of light in the real scene, the values of the imaging pipeline, and the image per-

ceived by the viewer. We are discussing an imaging system that differs from tradition

systems, requiring shifting between multiple representations of light, and the implica-

tions of those to human perception. It is critical to describe exactly what is meant by

each term.

Luminance – radiance weighted by the spectral sensitivity associated with the bright-
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ness sensation of vision. It is the result of weighting a spectrum by the function Y (λ)1

and represents the relative intensities of wavelengths visible to human observers. It di-

rectly corresponds to scene intensities and is also referred to as linear light. In the case

of LDR images it has been used to mean values proportional to intensity, or relative

intensity, as opposed to photometric images which record absolute intensity.

Lightness – the nonlinear quantization of luminance that expresses it in perceptually uni-

form units. Due to the nature of the visual system, for different absolute luminances, the

same change in relative luminance appears different in magnitude. Equal sized changes

of lightness appear the same, invariant of the value they are relative to. This is often

referred to as just-noticeable-difference (JND) space, and is detailed in Section 2.1.2.

Some literature uses lightness to specifically denote the standard LDR approximation,

CIE L∗; a metric not appropriate for photometric images.

1Also written as V (λ).
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Chapter 2

Related Work

There is a wide variety of research related to the topic of processing images for HDR

displays. Section 2.1 describes several aspects of perception and psychophysics, and

provides background on the attributes of the human visual system. The focus is on

aspects related to HDR displays and their evaluation, and discusses considerations for

extending methods to photometric imaging. Section 2.2 presents of some of the princi-

pal work on the conventional method of viewing HDR images: tonemapping operators.

In particular, we highlight operators that share similarity to the image processing pre-

sented later. Section 2.3 describes the physical construction of the HDR display systems.

We provide a concrete foundation from which to understand the considerations made in

the rendering methods. Section 2.4 examines calibration methods used for LDR displays

to provide a context for what is required to calibrate HDR displays.

2.1 Perception and Psychophysics

Any analysis of the display of images includes an inherent discussion about the viewer:

the perceptual makeup of the human observer. The human visual system (HVS) is pow-

erful, capable of accommodating a wide range of different conditions. Alternate means

of representing visual information have evolved to overcome biological limitations, and

have modified the perception of imagery encountered. One example is that the appear-

ance of scenes is dependent on the intensities and contrast ranges they contain [23],

with numerous everyday examples such as, “bright colors look more vivid” and “things

appear blueish at night.” An immense body of research on the study and characteriza-

tion of the various aspects of the HVS exists; far larger in the literature than what could
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be covered here. We will discuss several aspects of human perception important to the

differences in displaying images on LDR and HDR displays.

2.1.1 Local Contrast Perception

While we can see a vast dynamic range across a scene, we are unable to see more than

a small portion of it within a small angle subtended by the eye. This inherent limitation

can be explained by scattering properties of the cornea, lens, and vitreous fluid, and by

inter-reflection from the retina. It reduces the visibility of low contrast features in the

neighborhood of bright light sources. One example is the difficulty encountered when

trying to discern the license plate numbers of an oncoming car at night if the headlights

are on. Typical LDR display settings cannot produce the contrast ranges for this to have

an effect on the perception of the displayed image. However, it has significant influence

on perception of real world scenes, and of images on HDR displays.

Ocular scattering, a well documented phenomenon, depends on a large number of

parameters including spatial frequency, wavelength, pupil size as a function of adapta-

tion luminance [51], and age of the subject. This scattering of light has been the topic of

numerous studies and is conventionally modeled as an Optical Transfer Function (OTF)

in the angular frequency domain and as a Point Spread Function (PSF) in the angular

domain. Different researchers [55, 56] have derived models based on various sets of the

aforementioned parameters and Vos [75] attempted to unify a number of the existing

models. Much of the subsequent work [17, 48] has either validated or built upon his

model, largely by considering additional parameters of the model or by optimizing for

specific applications.

While different values are reported for the threshold past which we cannot make out

high contrast boundaries, most agree that the maximum perceivable contrast is some-

where around 150 : 1. Scene contrast boundaries above this threshold appear blurry

and indistinct, and the eye is unable to judge the relative magnitudes of the adjacent

regions. From Moon & Spencer’s original work on glare [52], we know that any high

contrast boundary will scatter at least 4% of its energy on the retina to the darker side

of the boundary, obscuring the visibility of the edge and details within a few degrees of
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it. If the contrast of an edge is 25 : 1, then details on the darker side will be competing

with an equal amount of light scattered from the brighter side, reducing visible contrast

by a factor of 2 in the darker region. When the edge contrast reaches a value of 150 : 1,

the visible contrast on the dark side is reduced by a factor of 12, rendering details indis-

tinct or invisible. Figure 2.1 shows the model by Deeley et al [17] at several adaptation

luminances.
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Figure 2.1: Modulated transfer function of the ocular medium at several adaptation

luminances.

Just because human observers cannot perceive all details in the presence of high

contrast features, one cannot claim high contrast content has no effect – clearly it does.

An observer will notice when one region is much brighter than another, both by the

challenge it creates in viewing the boundary, and by the accommodation that goes on

when shifting from side to side. When the threshold is very large, observers notice

a sensation and may even experience discomfort as they attempt to see detail near

a bright source. A familiar example for any driver is that a photographic print of a

nighttime scene with an oncoming car and headlights is merely an allusion to the real

experience – it cannot duplicate the visceral experience of glare, or reproduce the effect

it has on a human observer. It is exactly this kind of experience that an HDR display can

uniquely reproduce.

HDR display technology described is Section 2.3 only exploits the inability of humans
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to see detail in the immediate vicinity of a high-contrast boundary; it makes no assump-

tions about our overall response to varying brightnesses. Relative (and even absolute)

luminances are maintained, and edges will be reproduced exactly when they are below

the maximum contrast of the front display of about 250 : 1 in the current production

model. Only when this range is exceeded is some fidelity lost near high contrast bound-

aries, but this effect is well below the detectable threshold, and has not been visible in

any experiments [65].

2.1.2 Luminance Quantization

It has long been known that the human visual system does not respond linearly to the

luminance of a scene. Stated another way: lightness, the perceptually uniform measure

of light, is a nonlinear function of luminance. The human visual system is much more

sensitive to changes of low luminance. Given a low intensity Yd corresponding to a dark

scene and a high intensity Yb corresponding to a bright scene, and some change ∆Y ,

the perceived change in lightness between Yd and Yd + ∆Y will be greater than the

perceived change in lightness between Yb and Yb + ∆Y .

The psychophysical studies measuring the perception of lightness employ the same

design, and focus on the difference, ∆Y . The procedure measures the smallest value of

∆Y where Y+∆Y can be differentiated from Y . This is repeated for different intensities

Y and the relation is known as threshold-versus-intensity [29] (TVI). It is also commonly

referred to as just-noticeable-differences (JND), the unit of lightness, the perceptually

uniform function of luminance. A JND is the smallest detectable luminance difference at

a given luminance level; adding a JND to a particular luminance level defines the next

perceptually relevant step on the luminance scale.

Visual psychologists have have studied this phenomenon in depth and have pro-

posed numerous models describing the relationship. Much of the work addresses the

more complete relation of contrast perception as a function of lightness and spatial

frequency. The work most familiar to computer graphics is from by Blackwell for the

CIE [13] used by Ward [76], as well as the work by Ferwerda et al [26] in their model

of visual adaptation. The Ferwerda curve is shown in Figure 2.2, and includes separate
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measurements of the response of the cones and the rods. From the figure, it can be seen

that threshold perception of luminance resembles a logarithmic function, but decreases

in sensitivity at very low light levels.
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Figure 2.2: The left figure is a plot of the contrast versus intensity curve of the Ferwerda

measurements. The left right figure is an example of the test used to determine the

threshold differences that can be detected.

A threshold-versus-intensity function describes the quantization sensitivity for dif-

ferent intensities. However, it does not provide a mapping from scene luminances to

perceived lightness, and since it represents differential values, it does not provide a map-

ping function from luminance to perceptually uniform JNDs. Integrating the TVI function

provides the function of lightness in terms of luminance relative to some base luminance

Y0.

There have been many attempts to define perceptually uniform intensity metrics

over the years. The most commonly used metric in LDR applications is the CIE 1976

standardization of lightness L∗. It is a nonlinear function of luminance Y relative to a

reference white Yn, where Y and Yn are, both defined in terms of CIE luminance (CIE

1931XY Z trisimulus [14] color-matching functions). L∗ is used in both the CIELAB and

CIELUV [14] color spaces, which target print and video respectively, and L∗ models con-

trasts approximately1 100 : 1 and a peak luminance of somewhere around 200 cd/m2.

1We were unable to ascertain the exact method that inspired the formulation of L∗ and have been forced

to make an educated guess based on targeted applications and indirect evidence. Regardless of the exact

function, it is apparent that it is not an accurate fit for larger dynamic ranges.
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The equation for L∗ is

L∗ =

 903.3 Y
Yn
, Y

Yn
≤ 0.008856

116
(

Y
Yn

) 1
3 − 16, 0.008856 < Y

Yn

(2.1)

and approximates the response of a 0.4-power function, mapping from a normalized

luminance to a value between 0 and 100. The response is plotted in Figure 2.3. A linear

segment is included for practical reasons and the break occurs where the function equals

an L∗ value of 8, corresponding to a contrast ratio of 100 : 1. Obtaining values below

8 is rare in practice and the break is considered the effective limit for video applications,

reinforcing the fact that L∗ is only applicable to LDR images.
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Figure 2.3: CIE L∗ curve.

In addition to the numerous LDR lightness functions, several HDR luminance quan-

tizations have been proposed. The two we are aware of are the DICOM standard

grayscale display curve [19] and Mantiuk et al’s [46] derivation. Figure 2.4 contains

plots of both functions compared to a log function.

The DICOM standard is based on work by Barten [9] on deriving an analytic for-

mula for the contrast sensitivity of the human visual system. Barten’s original work [7]

addressed creating a complete model of the sensitivity of the human visual system as a

function of all attributes, including observer-specific values of the eye, luminance level,

spatial frequency, temporal change [8], and orientation. From this Barten arrived at a
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DICOM curve covers a smaller range of luminances but grows significantly faster, con-

sistent with its intended use with LDR devices of difference intensities.

simplified form [10] related to a determined standard observer, which the DICOM stan-

dard simplifies further to derive a function of only luminance. The DICOM standard

grayscale display curve is defined over a fairly wide range of 0.5 − 4000 cd/m2, which

encompasses a range from the black level of CRTs and up to the reference white of

lightboxes, and has been validated in perceptual experiments. Regrettably, the DICOM

standard was designed to address LDR output devices operating at different luminance

levels. The HVS perceives contrast differently at different intensities. To ensure that ra-

diological images were viewed properly and doctors did not draw different conclusions

based on the brightness the display device, DICOM added a modification similar to the

tone scale alteration described in Section 2.4.1.

In their SIGGRAPH 2004 paper, Mantiuk et al [46] describe a different luminance

quantization. Working directly from the threshold-versus-intensity results [13, 26] de-

scribed above, they solve the differential equation mapping the TVI measurements to

luminance values and numerically invert it to yield a lookup table mapping luminances

to JNDs. Their results cover the full range of the TVI curves, covering luminances from

10−4 cd/m2 to 108 cd/m2. While their work addresses real scenes, and does not in-

clude any modification to make image appearances luminance-invariant it has not had

any formal perceptual validation.
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Perceptual luminance quantization has important implications for the design of imag-

ing systems. Because the smallest change an observer can detect is 1 JND, it is redundant

to provide additional display driving levels in the space of 1. In case of LDR displays,

which have a limited number of driving levels, the display response is adjusted to match

perceptual quantization, as discussed in Section 2.4.1. HDR displays do not suffer from

the same problems, as described in Section 2.3.

2.1.3 Visual Difference Prediction

Many fields, such as video editing and and print design, require the accurate portrayal

of images. When researching and designing systems for these fields, creators desire

the ability to simulate the characteristics of their designs prior to production, and verify

them afterwards. Traditional metrics, such as least squares error between images, are

exceedingly poor metrics of perceived difference. Human perceptual sensitivity is a very

complicated process, and has components that greatly vary, depending on the feature

in question. There is a desire to have methods that can model the differences that a

human observer can perceive between the original image and the image reproduced by

an imaging system.

The solution for accurate modeling of the HVS comes from a combination of two

separate areas of research. On one end, work, such as the research of Barten [7], has

been conducted on modeling of contrast and spatial sensitivity of the human visual sys-

tem, building upon the aspects of perception presented above. On the other end, work

has been conducted on defining color appearance models that describe how we per-

ceive color. The basic CIELAB and CIELUV [14] attempts at perceptually uniform color,

have given way to CIECAM97 [2] and CIECAM02 [53], which consider such effects as

background, surround effects for simple environments. The combination of these two

areas of research are full image appearance models such as Fairchild et al’s iCAM [23]

and Pattanaik et al’s multiscale observer model [59], which describe effects of both areas

and are designed to address high dynamic range images.

While image appearance models can render images in a similar manner to the HVS,

they aren’t sufficient for comparing differences. Even though images are transformed to
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Figure 2.5: Inputs and resulting output from each stage of the VDP process.

model the visual system, we cannot simply compare pixels. The probability of detecting

differences in perceived images is equally complex as the simulation of the perceived

images. This motivates the development of metrics that can account for complexity.

The method then, is to take the original image and the distorted image to be compared,

process both with some form of image appearance model to transform them into some-

thing the observer would perceive. Then, it compares them using a function that mimics

human detection mechanisms, usually based on some form of spatial frequency hierar-

chy such as Gabor pyramids [41], to obtain the perceived difference. The combination

of an image appearance model with a set of perceptually-based detection mechanisms

forms a visual difference.

While several such models exist, two of the most popular are the Visible Differences

Predictor (VDP) by Daly [15] and the Sarnoff Visual Discrimination Model [42]. How-

ever, to our knowledge, only one visual difference metric exists for HDR images: the

work by Mantiuk et al [47] extending the VDP to HDR images, and its subsequent cal-

ibration [45]. We use their high dynamic range visible differences predictor (HDR VDP)

as the basis of our validation in Chapter 5. There we describe how we apply the HDR

VDP to verify our results.

The HDR VDP consists of the two parts described above. In the case here, the

first part has 3 phases. It first applies an optical transfer function (OTF), then applies

nonlinear luminance quantization to express the image in JND units, and finally filters

each image with a contrast sensitivity function (CSF) such as the ones described by

Virsu et al [74] or Barten [7]. The second part has 4 phases. First, it applies the cor-

tex transform [79], then it adjusts the images to account for visual masking and phase
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uncertainty, weights the inputs based on a psychometric function, and finally combines

the probabilities to get the visual differences. We introduce these components in the

following paragraphs and discuss them further in Chapter 5.

The majority of the HDR VDP modifications occur in the image appearance modeling

phase. The original VDP only targeted images of limited contrast, and as a result it did

not address the scattering of light due to the ocular medium. It does not include a model

the optical transfer function described in Section 2.1.1, which the HDR VDP performs as

a first step. While the original VDP did model luminance quantization, and accounted

for the change in the function due to different adaptation luminances, it still operated on

relative luminances and assumed a maximum dynamic range of the images. The HDR

VDP replaces this with the absolute, JND-scaled luminance quantization described in

Section 2.1.2. The HDR VDP derives a quantization from the contrast sensitivity function

similar to the method of Daly. The CSF of the original VDP varied with adaptation

intensity, but due to the limited dynamic range the function was only evaluated for one

luminance. The HDR VDP must account for multiple CSFs in the same image due to the

range of luminances present. As an optimization, they prefilter the images by the CSF of

many luminance levels, then blend the values based on the adaptation at a given pixel.

Because the input to the detection mechanisms is a perceptually linearized image,

no change is necessary; the only difference is a scale factor to change from a normalized

relative unit to a JND-scaled unit. The cortex transform, which models the orientation-

sensitive cells in the visual cortex, decomposes each image into a spatial frequency hi-

erarchy which is further filtered by orientation. The modeling of masking and phase

uncertainty accounts for the contrast scaling of the difference between the two images

relative to the original signal it modifies, while the the psychometric weights all of the

inputs based on a psychophysical model of contrast sensitivity. Finally, a product series of

all of the images of the spatial frequency hierarchy computes the probability of detecting

the distortion for each pixel.
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2.2 Tonemapping Operators

For any image representation to seem realistic, it needs to evoke the same response in

the visual system as did the original. This challenge goes beyond computer graphics, it

is a problem fundamental to any media and familiar to both artists and photographers.

The intensity and contrast of real scenes vastly exceed the range that can be produced

by canvas, photographic print, or by conventional computer display. A simple linear

rescaling of the luminance values is insufficient, and more complicated mappings of

luminance, collectively know as tonemapping operators, are required.

Tonemapping operators have been the traditional method of displaying high dy-

namic range images, and the only available means prior to HDR displays. The first

research was done by Oppenheim et al [57] in 1968, while the first operator to explicitly

address HDR images was that of Miller et al [49] in 1984, who attempted to intro-

duce topics in computer graphics to the field of lighting design. Operators were first

introduced to computer graphics by Tumblin et al [73] in 1993.

Numerous fields have been confronted with this problem and derived different meth-

ods tailored to their needs to, and address issues, as a result the means in which tonemap-

ping operators reduce the dynamic range varies. The various methods draw inspiration

from many different aspects of images, such as making assumptions on reflection, pay-

ing attention to how artists have overcome the challenge, or by emulating portions of

the HVS. Even with this variation, two basic classes of methods exist: global operators

and local operators. Global operators consider overall properties of the image (such as

using histogram data) and apply the same function to every pixel of the image. Local

operators consider properties of a local neighborhood, and vary the function for a given

pixel accordingly. This implies that global operators will map two pixels of a given lu-

minance to the same intensity regardless of their location, while local operators could

map the same 2 pixels to different intensities depending on neighboring pixels. Table

2.1 contains a list of all tonemapping operators we cite in this thesis, while Figure 2.6

compares the results of several.
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Global Operators Miller et al. [49]

Tumblin et al. (1993) [73]

Ward (1994) [76]

Ferwerda et al. (1996) [26]

Local Operators Oppenheim et al. (1968) [57]

Chiu et al. (1993) [12]

Pattanaik et al. (1998) [59]

Ashikhmin (2002) [4]

Durand & Dorsey (2002) [21]

Fattal et al. (2002) [25]

Reinhard et al. (2002) [61]

Fairchild & Johnson (2002) [22]

Table 2.1: Table of tonemapping operators cited in this thesis

2.2.1 Taxonomy of Operators

In this section, we discuss the two classes and describe some of the operators that pro-

vide insight into processing images for HDR displays. A full overview is beyond the scope

of this document, but other resources provide excellent coverage. Devlin [18] provides

a comprehensive overview of techniques up to 2002, and as Reinhard et al’s book [62]

covers the majority of tonemapping operators and provides source code of the imple-

mentations. We focus on operators that make use of aspects of human perception or

that share similarities with the processing of HDR images for display.

Global operators, as stated, modify each pixel based on global characteristics of the

image. They are the faster of the two classes of operators because the amount of infor-

mation they consider is fundamentally limited. The core idea is to create some mapping

from HDR to LDR that roughly corresponds to how our visual system responds to lu-

minance, hopefully preserving the same details. They can only handle limited dynamic

ranges because they are effectively forced to be monotonic. Since they cannot smoothly

alter the surrounding area like local operators, any global reverse of gradients would

introduce undesirable discontinuities.

Miller et al [49] employ a function to map scene intensities to preserve perceived



Chapter 2. Related Work 20

Figure 2.6: Selection of tonemapping operators applied to images. The Ward [76] (top),

Reinhard et al [61] (middle), Durand & Dorsey [21] (bottom) tonemapping operators

applied to two sample images. (Left image courtesy of Greg Ward.)

brightness ratios. The function, intended for displaying images of indoor scenes, was

derived from work by Stevens & Stevens [69] and was only defined correctly up to

values of about 1000 cd/m2. Tumblin et al [73] took the same brightness function

and modified it to preserve the brightness values directly, as opposed to ratios thereof,

resulting in a more usable operator.

Ward [76] and Ferwerda et al [26] take a different approach. They use threshold-vs-

intensity (TV I) measurements, discussed in Section 2.1.2, to derive luminance quanti-

zations which model the perception of lightness in terms of just-noticeable-differences

(JNDs). Ward bases his operator on the contrast sensitivity data collected by Black-

well [13] on photopic viewing conditions, while Ferwerda et al use different data, but

extend their operator to model both photopic and scotopic viewing conditions. These
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JND values are used to perceptually linearize the input image, quantizing it so only the

information regarding perceivable changes is retained. Differences are preserved but

none of the limited display steps are wasted on details which are undetectable by the

HVS.

Local operators, on the other hand, preserve local contrast while still reducing it glob-

ally. In addition to considering global image characteristics, these tonemapping oper-

ators take the local neighborhood of a pixel into consideration when determining its

value. The result is often a more effective reduction of dynamic range, especially for

images with extreme contrasts, but this effectiveness comes at a higher computational

cost.

Reinhard et al [61] note that photographers have overcome the dynamic range lim-

itations in the photoprinting process and mimic many of the conventional photographic

techniques. Their photographic tonemapping operator makes use of the Zone System [1]

to map a range of intensities into a lower dynamic range while preserving texture de-

tail across the entire range, then mimics the dodging and burning2 of developing pho-

tographic prints with different sized blurred versions of the image to further decrease

contrast around bright and dark areas.

Many perceptually-based local operators are derivatives of the image appearance

models [23, 59], discussed in Section 2.1.3, opposed to operators that purely address

dynamic range reduction. Compared to pure tonemapping operators, image appearance

models include elements of the human visual system, such as modeling ocular scatter to

add blooming around bright light sources, that may degrade the resulting images. This

seemingly undesirable decision can be explained by Spencer et al’s [67] observation that

viewers get a better impression of the luminances and dynamic range in tonemapped

image if it includes their own perceptual shortcomings. To use image appearance models

for tonemapping, the appearance model is first applied to the original image containing

scene luminances and results in the simulation of perceived image. To display the image,

the parameters of the output device are input to the inverse of the model which is then

2Dodging and burning refer to the selective over- and under-exposure of areas of the print relative to some

base exposure. These techniques serve to reduce global contrast in the image produced.
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applied to the result of the first step. Pattanaik et al’s [59] multiscale observer model

is often referred to as the most complete example, containing all elements of human

vision understood well enough to be modeled, while Ashikhmin’s [4] operator is similar

but only considers portions relevant to dynamic range reduction.

Finally, there are two operators which share important features with the image pro-

cessing for HDR displays. Durand & Dorsey’s [21] bilateral filter is an edge-preserving

smoothing filter that removes large-scale luminance differences, but preserves details by

separating the image into a base luminance layer and detail layer. This separation of

base and detail layers is the same general methodology discussed in Section 3.2, but

differs in what it does with those layers. Chiu et al’s [12] work divides the original by a

blurred version of the image, discarding large-scale luminance differences but retaining

details. The HDR display performs a similar operation optically, so the image processing

needs to account for this. We modify the LCD panel image to correct for intensity dis-

crepancies with the low-resolution backlight. In both Chiu’s operator and in our work,

this results in reverse gradients around areas of high luminance, where the dimmer side

of the high-contrast boundary is further darkened. While this effect is undesirable in a

tonemapped image, it is beneficial when processing images for display.

2.2.2 Validation

While tonemapping operators have been in use for a considerable period of time, work

has only recently begun on verifying how accurately they preform the task of replicating

the visual representation of images. The first work on the subject was by Drago et

al [20], who performed a study where users assigned a value to the similarity of two

tonemapped images and rated the images on how natural they appeared by preference.

Park and Montag [58] evaluate tonemapping operators for use on HDR scientific images,

asking users to rank operators on their opinion of scientific usefulness in addition to

preference, and the measured the effectiveness of different operators for various tasks.

Kuang et al [36] and Fairchild et al [24] both studied user preference between operators

to create rankings of their accuracy. They made the important observation that users

prefer images that are more colorful and contain more contrast than is natural, implying
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that studies based on preference have limited ability to determine the accuracy of tested

operators.

More recent studies have moved away from judging user preference of opera-

tors. Yoshida et al [80] asked users to rank the accuracy of operators by comparing

tonemapped images to the real scenes. Ledda et al [40] concluded that tonemapped

images might not be similar enough to real scenes to obtain meaningful relations from

operator comparisons. Instead, they ask users to compare the results of tonemapping

operators to images on an HDR display, which they previously demonstrated [39] was an

accurate depiction of real scenes. Validation is is still being actively investigated, and has

recently gotten attention outside of academia, which in turn resulted in the formation of

the CIE technical committee TC8-08 to study tonemapping operator validation [32].

2.2.3 Shortcomings of Tonemapping

The goal of tonemapping operators is to faithfully reproduce the visual representation of

an image in an output medium that is not capable of directly representing the intensities

or dynamic range of the original. While they succeed in depicting more visual informa-

tion than by not using one at all, they cannot completely realize the goal. Conventional

displays are too limited to convey images of real scenes with complete accuracy. For the

range of luminances found in indoor scenes, the same range covered by HDR displays,

JND metrics predict over 1000 discernible values. Conventional output mediums can

only reproduce about 25% of those values, resulting in a significant loss of information.

Furthermore, there are perceptual and psychophysical effects that depend on inten-

sity alone. The sensation one feels when the pupil contracts in the presence of a bright

light cannot be mimicked through any image processing. While a tonemapping operator

could show details in all areas of an image of a car and headlights at night, no one would

confuse it with the original. Tonemapping operators can mimic processes of the HVS to

deliver more information, but cannot reproduce the visceral experiences of the original

scene luminances.
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2.3 HDR Technology

In a conventional LCD, two polarizers and a liquid crystal are used to modulate the

light coming from a uniform backlight, typically a fluorescent tube assembly. The light

is polarized by the first polarizer and transmitted through the liquid crystal where the

polarization of the light is rotated in accordance with the control voltages applied to

each pixel of liquid crystal. Finally, the light exits the LCD by transmission through the

second polarizer. The luminance level of the light emitted at each pixel is controlled

by the polarization state of the liquid crystal. It is important to point out that LCDs

cannot completely prevent light transmission - even at the darkest state of a pixel, light

is emitted and as such the dynamic range of an LCD is defined by the ratio between the

light emitted at the brightest state and the light emitted in the darkest state. For a high

end LCD, this ratio is usually around 300 : 1, with monochromatic specialty LCDs (e.g.

those for medical imaging) going up to 700 : 1. The luminance level of the display can

be easily adjusted by controlling the brightness of the backlight, but the dynamic range

ratio will remain the limiting factor. In order to maintain a reasonable ‘black’ level of

about 1 cd/m2, the LCD is thus limited to a maximum brightness of about 300 cd/m2.

The fundamental idea of the HDR display is to use an LCD panel as an optical filter

of programmable transparency to modulate a high intensity but low resolution image

from a second display. For example, assume we have any display with a contrast range

of c1 : 1 between the darkest and the brightest intensity producible by that display. If

we now put an LCD panel with a contrast ratio of c2 : 1 in front of the first one, then

the (theoretical) contrast of the combined system is (c1 · c2) : 1. Two different versions

of HDR displays have been constructed around this principle: one using a projector as

the rear display, and one using a diffused grid of LEDS as the rear displays.

In practice, the first display needs to be able to produce a very high intensity image,

because color LCD panels only have a transparency of about 3-8%, even when switched

to ‘white’, so that most energy is actually absorbed. Another reason for using a display

with a very high base intensity is that a lot of the HDR images we would like to show

have, very bright regions in them.

For reasons discussed below, the projector version of the HDR display is mostly a
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prototype and there are no plans for a production model. However, it is slightly simpler

in its design and provides an excellent introduction to the LED-based design that is used

in the HDR display.

2.3.1 Projector-based Display

For the projector-based HDR display [64], the backlight and the first modulator are

combined into a single DLP using a Digital Mirror Device with a dynamic range of about

800 : 1. The three central components of the HDR display are then the projector, the

LCD and the optics that couple the two. Using these components, each image on the

HDR display is the result of modulated light coming from the projector which is directed

onto the rear of the transmissive LCD by the optics system, modulated a second time

by the LCD, and properly diffused for viewing. Figure 2.7 contains a photograph and

diagram of the internal construction.

Figure 2.7: Internal schematic of projector display.

To reduce unnecessary light loss, the color wheel of the projector has been removed,

resulting in a monochrome display system with a roughly threefold increase in brightness

due to the absence of the color filters. New control electronics have been integrated into

the commercially available projector to re-synchronize it in absence of this color wheel.
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The LCD panel has been separated from the conventional backlight and all of the optical

layers behind the display have been removed to create a transmissive image modulator.

The optics used in the HDR display include the conventional projection lens of the

projector, and a Fresnel lens directly behind the LCD display to collimate the projected

light into a narrow viewing angle for maximum brightness of the HDR display and to

avoid color distortion due to diverging light passing through the color filters of the LCD.

Finally, a standard LCD diffuser was used to redistribute the collimated light into a rea-

sonable viewing angle.

All three components have been installed in a single housing with appropriate align-

ment mechanisms to create a close matching of the DLP and LCD pixels. The alignment

can be fine-tuned through the controls of the DLP projector. However, a perfect match

is impractical as alignment at the sub-pixel level is exceedingly hard to achieve and

maintain. To avoid moiré patterns and alignment artifacts associated with even a minor

misalignment, the projector image has been deliberately blurred. As described in the

following section, compensating for that blur in the LCD image is a key component of

processing images.

Using this configuration, the light output of each pixel of the HDR display is ef-

fectively the result of two modulations, first by the DLP and then by the LCD pixel,

along the same optical path. The upper boundary of the dynamic range results from full

transmission of both pixels (i.e. the 255th level on both modulators), and the lowest

boundary from the lowest possible transmission of both modulators (i.e. the 0th level

on both modulators). Since the DLP has a dynamic range of 800 : 1 and the LCD a dy-

namic range of 300 : 1, the theoretical dynamic range of the HDR display is 240, 000 : 1.

Imperfections in the optical path introduce noise that reduces the dynamic range to a

measured 54, 000 : 1. The luminance values matching these boundaries are a result of

the brightness of the projector and the transmission of the LCD.

In this case, the projector is rated at 1200 Lumens, or approximately 3600 Lumens

once the RGB color filters are removed (since each filter for red, green and blue eliminates

approximately 2/3 of the incoming light). The particular LCD panel used has a measured

transmission of approximately 7.6% in the white state (this is quite high for an LCD since

even the theoretical maximum for a color LCD without any losses is only 16% due to
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the light reduction of 50% at the polarizer and another 66% due to the RGB color filter).

Assuming that the light emitted by the HDR display is diffused across a solid angle ω,

the maximum luminance is then given by:

Lmax =
Φmax

Aω
, (2.2)

where A is the area of the LCD and Φmax is the maximum outgoing flux. In the HDR

display prototype, the flux is approximately 182 Lumens (2400 Lumens ×7.6%). The

area A is the area of the 15 in LCD (697 cm2) and the solid angle of diffusion ω is ap-

proximately 0.66 sr (40◦ diffusion horizontally, 15◦ vertically). The maximum luminance

for this particular configuration is then approximately 3956 cd/m2. The actual measured

peak luminance was 2700 cd/m2 Lumens. The theoretical minimum luminance is less

than 0.01 cd/m2, while measurements yielded a value of 0.05 cd/m2. Clearly, a shift of

this range toward even higher luminance values would be possible with a brighter pro-

jector or with a more transmissive LCD. Unlike a standard low dynamic range display,

even an order of magnitude increase of the maximum luminance would not significantly

reduce the quality of the ‘black’ state since 1cd/m2 is still a very satisfying ‘black’, es-

pecially if other parts of the image contain very high luminance values.

Within that luminance range, a very large number of different combinations of out-

put settings for the DLP and LCD can be achieved. If both systems were linear 8-bit

devices then the total number of combinations would be 2562, over 17 000 of which

are distinct. Due to the nonlinear gamma of each system, the actual range of distinct

addressable steps is different, but still significantly larger than what is needed to display

the 962 JND steps necessary to provide all visible and distinguishable luminance steps

in the measured luminance range of the system (including all losses) of 0.05 cd/m2 to

2700 cd/m2.

High power consumption and the resulting thermal management requirements are

a consequence of the image creation mechanism inside the projector. Unlike a cathode

ray tube (CRT) display, where light is created only in the regions of the image that are

supposed to be bright, an LCD or DLP projector creates a uniform light distribution that

is then modulated by the LCD or DLP mirror chip. The power consumption of an LCD

or DLP projector is thus independent of the image and always very high as there has
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to be enough light produced by the lamp such that a full screen ‘white’ can be shown.

Combined with the low modulation efficiency of the LCD or DLP this causes the high

power consumption. In the HDR display the situation is worse than in a conventional,

single-modulator display. The lamp of the projector has to emit enough light to allow

a full screen image at the highest possible brightness of the HDR display. To achieve

10 000 cd/m2 on a 15in screen we would need an outgoing flux of approximately

500 Lumens (see Section 2.3.1). Even with a very high transmission LCD this requires

at least 5000 Lumens to be emitted from the projector. In the prototype presented in

Section 2.3.1 the color wheel/filter of the projector has already been removed to reduce

the losses in the projector but even so the modulation efficiency of the projector is slightly

less than 50%. The lamp thus has to produce in the order of 1000 Lumens. Yet, in almost

all HDR images the area that is actually at such a high brightness of 10 000 cd/m2 is

very small.

In fact, a random selection of 100 HDR images indicated that average HDR im-

ages have less than 10% of the image content in the high luminance range (above

3000 cd/m2) and that the average luminance over all images was less than 800 cd/m2

for indoor scenes and 2100 cd/m2 for outdoor scenes. The projector HDR display con-

sequently creates a factor of between 12.5 and 4.75 too much light at any given time.

As seen in the discussion of the projector-based HDR display in Section 2.3.1 there are

significant obstacles to overcome.

To realize the dream of television or computer displays presenting images that look

indistinguishable from the real world, it is not sufficient to merely show images with

the appropriate luminance range and resolution; it is also necessary to make a commer-

cially viable system that achieves these higher quality images within the hardware and

software infrastructure and market price points of today. The version of the HDR dis-

play described in this section retains the high image quality of the projector display and

overcomes the commercialization barriers: power, thermal, cost and form factor.
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2.3.2 LED-based Display

As mentioned in Section 2.3.1 and discussed in Section 3, it is possible to compensate

for a low resolution of the rear image of the HDR display. It is important to realize

that this correction works properly, as long as the local image contrast does not exceed

the dynamic range of the front modulator. From the psychophysical theory presented

in Section 2.1.1 we can establish the largest size of a rear image pixel. A second ver-

sion [11, 71] of the HDR display uses light emitting diodes (LED) at the largest possible

size allowed by the veiling luminance effect that has been validated previously through

experimental tests [65]. Figure 2.8 shows the current generation of LED-based HDR

display, the BrightSide DR-37P.

Figure 2.8: Photograph of BrightSide DR37-P.

The production version has been constructed using Seoul Semiconductor 2.5 Watt

white LEDs (PN W10290) on a 18.8mm hexagonal close-packing matrix where each

LED is individually controlled over its entire dynamic range with 256 addressable steps.

1380 LEDs have been mounted behind a 37in Chi Mei Optoelectronics V370H1-L01

LCD panel with a 250 : 1 simultaneous contrast ratio3 and 1920× 1080 resolution. For

a full white box occupying the center third of the screen, the maximum luminance is

3Display manufacturers often employ various methods of distorting the calculation of dynamic range, such

as altering room illumination between measurements. The ANSI 9 checkerboard provides a standard measure

of the usable display dynamic range, which we use to determine this number.
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measured as 4760 cd/m2. For a black image, the minimum luminance is zero, since all

LEDs are off. The minimum luminance is less than 6 cd/m2 on a ANSI 9 checkerboard

(the VESA contrast standard). And like the projector display, while not every pair of driv-

ing values of the LEDs and LCD panel results in a unique luminance, the approximately

17 000 unique luminances that can be produced is significantly larger than the 875 JNDs

predicted.

2.4 Display Calibration

While there are many area-specific display calibration requirements, such as those made

by medical imaging and film production, they all share some common traits. For LDR

display devices, the simplest approach is to alter the image values to compensate for a

device with a nonlinear response, adjusting the input so the output is linearized. How-

ever, this alone is insufficient and there are other factors that must be considered in

calibrating displays. The properties of human perception make it a much more subtle

problem. We will analyze traditional calibration practices, explain their motivation, and

discuss which portions still apply to HDR displays.

2.4.1 Gamma

Any discussion of display calibration eventually involves a discussion about gamma, one

of the most misunderstood topics in electronic imaging. It has been adapted to serve

many roles simultaneously, obscuring its original purpose. The primary considerations in

the creation and calibration of displays are to minimize quantization on a lossy (8 bit)

channel, to linearize the display response, and to account for the change in perception

of the observer to maintain rendering intent.

Minimize Quantization. A key question to ask in designing any display system is how

many distinct input/output levels are necessary to cover the desired range without band-

ing or similar quantization artifacts? As described in Section 2.1.2, human perception of

lightness is nonlinear, and for practical purposes in imaging, it is stated that we can detect
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1% differences in luminance. Covering a range of 100 : 1 (near the maximum effective

contrast of a conventional LDR display) with an increment of 0.01, as required to avoid

quantization in the areas with highest sensitivity, requires 10 000 values, or roughly a

14-bit representation. If covering the range with a ratio of 1.01, it takes roughly 460 val-

ues, or 9 bits. Based on other factors affecting our perception, 8 bits are used in practice,

and this quantization is the primary factor in the design of LDR imaging systems. This

fact is incorporated into the design of all optioelectric transfer functions (OETFs), such

as the television standard Rec. 709 [31] and the computer standard sRGB [70], which

are similar to L∗ described in Section 2.1.2. All three curves are plotted in Figure 2.9.
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Figure 2.9: Comparison on L∗, Rec. 709, and sRGB OETFs.

Recently, Muka & Reiker [54] have argued that, for conventional displays with a

typical dynamic range of 300 : 1 or so, an 8-bit representation of images is sufficient for

medical diagnosis. They argue that the difference between an 8-bit digital display and a

10-bit or higher bit depth is minimal, and perhaps not noticeable at all. However, as the

range of displayable luminances increases, so does the number of JND steps required to

cover that range, which is reflected in the numbers presented in Section 2.1.2. If the

original medical data was of a bit depth of 10-bit or greater, an HDR display would be

able to display the additional data, if combined with proper image processing techniques,

such as work by Ghosh et al [27]. They process volume data to preserve the additional

HDR information, and subsequently use it to tune image presentation to extract key
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features.

Linearize Response. Regardless of whether images are encoded linearly or not, in order

to display images without artifacts, the output device must have quantization charac-

teristics paired with human lightness sensitivity. We could make a display with a linear

response capable of outputting 14 bits of driving levels. However, this is very difficult,

if not impossible, to manufacture and most of those driving values would be wasted

because of the sensitivity of our visual system. Ideally, we want a display that produces

relative luminances with a response that is the inverse of the lightness perception of the

HVS. For example, on the low end of human perception, small changes in luminance

cause a relatively large changes in lightness, so we would need a display such that a

large change in driving value on the low end would cause a relatively small change in

luminance.

This relationship is almost exactly the case with conventional displays [60]. In the

case of CRTs, this is the result of the physics of the electron gun. CRTs have a response

proportional to a power between 2.35 and 2.55, roughly the inverse of the 0.4-power

of our lightness perception of LDR images. In LCDs, plasma display panels (PLPs), and

digital light processors (DLPs) this is accomplished by a lookup table in the display con-

troller that mimics the inverse response of human vision. The important thing is not that

the display response is the inverse of the power relation of the OETFs, but that it has

a response that is roughly the inverse of human lightness perception, because that is

what the OETFs model. The inverse signal distributes values in a way that minimizes the

quantization of the signal in perceptual terms, having equal spacing of the lightness of

the values, not the luminance.

Rendering Intent. From Section 2.1.2, it can be observed that the perception of light-

ness is a function of the luminances and the contrast range being addressed. For the

luminances and contrasts of conventional displays, the closest match was found to be a

power function of Y 1/3, while for real scenes it was found to be closer to a log(Y ) func-

tion. Our perception of contrast is dependent on the scene intensity, to the point that

a lower contrast image shown at a higher luminance can appear to have more contrast
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than another image having more contrast but shown at a lower luminance.
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Figure 2.10: Tone scale curves for different intensity surroundings.

Another important attribute of human perception is the effect of the surround, the

ambient level of light in the environment on image perception when viewing a display.

From the work of Bartelson and Breneman [6], it is know that the light level of the

surround has a significant impact on adaptation, and thus lightness perception. The

surround luminance has a direct impact on viewer adaptation and the contrast they

perceive. Decreasing the surround luminance reduces the contrasts perceived by an

observer.

These two observations have implications for reproducing images at different in-

tensities. The designer of the OETF must compensate for a change in the perceived

contrast of the reproduced image, known as tone scale alteration. For conventional dis-

plays, along with a specified peak display luminance for an OETF (such as the SMPTE

standardization [66] of 103 cd/m2 for studio video monitors), there is also a specified

ambient luminance. Together these two values determine the required amount of tone

scale alteration, and is one of the many reasons for the existence of multiple standards

for OETFs such as REC 709 [31] and sRGB [70].

The OETF has to be matched to the ambient luminance. In order to do so, imaging

systems incorporate an additional power term into the OETF to accomplish the tone

scale alteration. This additional term purposely mismatches the previously paired display
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response with the appropriate OETF. The combination of the OETF encoding and the

display decoding exponent causes nonlinear outputted luminances, and is referred to as

the end-to-end power. Work has been done by Antwerp [3] and Barbier [5] on sensing

the ambient luminance level and adapting the tone scale to match, but the fact remains

that some form of alteration is always required for conventional displays.

As an example, consider viewing the same image in two different environments: a

theater and an office. The theater has an ambient luminance of around 5 cd/m2 and is

considered a dark viewing environment. The office environment easily has an ambient

luminance of 200 cd/m2 and is considered a light viewing environment. In the case of

the film, the encoding step is the recording of scene luminances to the negative film

when shooting, and the decoding step is the copying of values to the slide film used in

the projector. Projector film has a decoding exponent of 2.5 while negative film has an

encoding exponent of 0.6. This results in an end-to-end exponent of 1.5, suitable for

the dark viewing environment. In an office environment, the CRT or LCD has the same

decoding exponent of 2.5, but the sRGB [70] specification states an encoding gamma

of 0.45. As a result, the office display has an end-to-end exponent of 1.125, suitable for

the light viewing environment.

Linear OETF Display

End-to-end

L* Linear

Surround

{

Figure 2.11: Flowchart of the different aspects considered in the design of a gamma

curve. Starting with linear scene luminances, an OETF encodes the luminance values.

This OETF is paired to the display response, and the difference between these is know as

the end-to-end encoding power. The end-to-end power is chosen to match the current

perceptual response to luminance, determined by the surround luminance. All of these

components work together to produce a perceived image that is perceptually linear and

without artifacts.
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OETFs serve many purposes simultaneously, and because the math is associative,

many different corrective measures can be collapsed into a single formulation. Addition-

ally, since most OETFs contain a linear segment near zero for various practical purposes,

the offset means that the exponent one sees in the equation is not the exponent of

the curve that most closely approximates the OETF. Combined, these factors lead to the

confusion seen surrounding the concept.

2.4.2 Implications for HDR displays

Together, the three concepts detailed above form the basis of calibration curves for LDR

display devices. The different portions can be measured and calibrated more exactly than

what we have described, but the basic functions do not change. With an understanding

of the considerations involved in designing LDR imaging systems and the formulation of

OETFs to match the display device and the viewing environment, we can now consider

the portions pertinent to HDR image processing.

Nonlinearly encoding data is only necessary when the number of addressable driv-

ing levels of the display device do not provide a luminance quantization equal to or less

than the smallest luminance quantization perceivable by the observer. The number of

JNDs in the range of intensities of a conventional display is roughly equal to the num-

ber of driving levels of the display device, but the quantization is not uniform and has

more resolution at low luminances. This requires modifying the output system to ac-

commodate the luminance quantization of the viewer, motivating the 2.5 exponent in

conventional display responses. In the case of the HDR display, the number of driving

levels is significantly larger than the number of JNDs. We can address luminances with

linear encoding, as long as the quantization level of the display is the same or less than

human lightness perception. Compared to conventional displays, this is more difficult to

show mathematically due to the dual-modulator configuration, but studies show that it

works in practice [65].

There is still a need to invert LCD response to produce linear light. The LCD panel

and LED are inherently tied together in their representation of the image, and they must

work in the same linear space. This calibration proceeds the same way as the standard



Chapter 2. Related Work 36

measurement method and produces a lookup table (LUT) to invert the values. It is also

useful because the LCD displays the fine changes in detail, and these are output with a

quantization suited to human vision by virtue of being sent through the LCD panel. No

additional calibration is necessary for the LEDs since the display hardware linearizes their

output.

In our work, we assume the effect of the surround on lightness and contrast per-

ception is negligible and do not address it. As stated, we only concern ourselves with

luminances within the range of the directly reproducible values (see Chapter 3). The dis-

play has a high enough peak luminance that it can reproduce real scenes without scaling

down the values, and does not require tone scaling to adjust for the loss of contrast

perception at lower luminances.

Additionally, the HDR display has a high enough peak luminance and a large enough

dynamic range that contrast and color perception should not significantly differ since

the luminances are roughly the same. The display is bright enough to drive viewer

adaptation in dim viewing conditions, lessening any effect of the surround. The higher

peak intensity of the display means that the viewing conditions play a relatively smaller

role in the perceived image. Much of the studies into accurate image reproduction on

LDR displays have been concerned with altering images and display characteristics to

accommodate the present viewing conditions. This is not a complete solution, as the

surround still does contribute some to the viewer’s perception. In some cases, it may be

necessary to take active control of the room illumination, similar to Ghosh et al [28], to

ensure that the images are perceived as intended.
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Chapter 3

Processing Algorithms

This chapter details the primary contribution of the thesis: methods of processing images

to drive HDR displays. We first discuss the overall challenge and formulate a high-level

approach. Working from that method, we modify the algorithm to introduce a number

of optimizations. Given the optimized method, we then discuss the implementation of

the methods used in practice.

It is worth noting that while HDR displays are more capable than conventional mon-

itors, they are still fundamentally limited. While the HDR displays have a higher peak

luminance and larger dynamic range, they cannot represent arbitrarily high luminances.

For example, the peak intensity is only a fraction of the intensity of direct sunlight. The

space of directly displayable images is much larger, but the fundamental constraints still

apply. Considering that, there are two separate challenges faced in presenting HDR

images for display:

1. How to map an image containing luminances or colors that exceed the capabilities

of the monitor into the color space of display.

2. How to process image data for display, taking image intensities and a color gamut

within that of the display and producing the best possible image.

The first portion concerns performing the tasks of tonemapping operators and color ap-

pearance transformations to preserve impression. The second task concerns the actions

like applying the gamma curve for LDR displays, or the work presented here used with

HDR displays. Accomplishing these two tasks will transform an image into a displayable

space defined by a device, then handle the intricacies of how that devices maps values

into that space. These two stages are illustrated in Figure 3.1.
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Figure 3.1: Two primary challenges in image presentation. The first challenge involves

the accurate capture and transformation of images taken with a calibrated camera to a

calibrated display. The second challenge involves the accurate display of those images

on a given hardware device.

As discussed in Section 1.1, we will only be addressing the second challenge, that of

providing a solid foundation for displaying an image within the color space of the display,

that can be built upon to address larger challenges. For clarity, all the work presented in

this chapter assumes an idealized display and only addresses algorithmic challenges. In

this chapter we assume hardware that responds linearly, and contains no variation from

its specification. Chapter 4 deals with calibration methods for nonlinear components,

and manufacturing variations.

3.1 Reference Algorithm

Given an image within the displayable color space, we must determine the LED driving

values and LCD panel image, that when combined by the optics of a given HDR display,

minimize the perceived error between the original and the reconstruction. Not only must

the pair of images accomplish that goal, but those images must be displayable by the

monitor hardware. The hardware constraints force us to search for two LDR images that

can be combined to approximate an HDR image. The same general approach applies

to both form factors of HDR displays discussed in Section 2.3, but we focus on LED

displays. All implementations were done for the BrightSide DR-37P in particular.
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3.1.1 Nonlinear System

The challenge of producing accurate images may be framed in many different ways. We

start with a simple approach that makes as few assumptions as possible. We describe a

nonlinear optimization problem that compares the displayed image to the desired image

using a perceptually-based objective function. The goal is to find the front and back

images such that, when simulated, results in an image with the minimum perceived

difference with the original. Figure 3.2 contains a diagram of the inputs and outputs of

such a system.

Output-referred
image

Nonlinear 
optimization

LED intensities

Corrected 
image

Human 
psychophysics

Hardware 
configuration

Figure 3.2: Flowchart of nonlinear optimization. Given an image, hardware configura-

tion and perceptual makeup, the nonlinear solver produces the correct LED intensities

and LCD image.

This optimization is multi-component problem. In order to have access to the image

produced by the display, a simulator of the display hardware and optics is required.

In order to perform a valid comparison between the displayed image and the desired

image, we need to transform both to a space where meaningful comparisons can be

made. A model of portions of the human visual system is also required. The resulting

images define the system of equations, objective function, and constraints are required,

and this influences the choice of solver.

Simulation of the Display Hardware. The first component addresses the requirements

for the conversion of driving values into displayed luminances by simulating the im-

age produced by the display hardware given LED and LCD values. The simulator takes

in hardware driving values in the range [0, 1] and maps them to displayed luminances

measured in absolute photometric units. First we address how to model the combination
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of LEDs and the diffuser that form the backlight, which requires knowledge of the posi-

tions of each of the LEDs on the hexagon grid, and the pointspread function (PSF) of the

diffuser in front of them. The measured PSF includes both the scattering of the diffuser

and the effects of the optics included in the LED package. We model the operation as

a 2D convolution of a set of Dirac delta functions at the position of the LEDs, by the

diffuser PSF. In the set of Dirac delta functions δD, each LED δj is modulated by a driving

value dj . With that, the entire simulation for the panel can be formulated.

I(p, d) = p · (PSFD ∗ δD) (3.1)

where I is the simulated image, p represents the values of LCD panel, and PSFD is

the function fit to the measured PSF. The convolution of PSFD and δD simulates the

blurring of the physical LEDs, resulting in the backlight for the LCD. This backlight is

then multiplied by the pixel transparencies p of the LCD panel to form the final image.

Perceptual Transformation. Once we have the simulated image, the next task is to

compare it with the given desired image. We employ a perceptual objective function

similar to the visible differences predictor (VDP) described in Section 2.1.3. For the pur-

poses of this formulation we use a simplified model and only include the most important

effects for this application: ocular scatter and perceived lightness. To simplify further,

we ignore the detection mechanisms, and thus produce more conservative results since

the probability of perceiving all differences is 1. We describe the perceptually uniform

function ψ as

ψ(I) = L
(
PSFe(Yavg) ∗ I

)
, (3.2)

where PSFe is the pointspread function of the human eye at a given adaptation lumi-

nance Yavg, and L is the luminance quantization in JND units.

Objective Function and Constraints. The objective function for our nonlinear opti-

mization is then the difference between the two perceptually uniform image represen-

tations. Taking the least squares error to compare the simulated image of a set of LCD

and LED values (p, d) and the desired image Ī we have

min
p,d

∥∥∥ ψ(I(p, d))− ψ(Ī)
∥∥∥. (3.3)
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This objective function is then subject to a set of constraints on the physical system: the

driving values of the LCD and LEDs must be physically feasible. For our model p, d ∈

[0, 1]. The display must remain within the power limits of the wall outlet. The DR37-

P display would pull 4 000W if driven at full power. In addition to being undesirable

from a cost standpoint the cooling system cannot sustain this power draw, as a standard

breaker is only 1 500W . The majority of the subsystems in the display draw constant

power regardless of image content, but the power consumption of the LED array can

vary greatly, and we have the inequality constraint

e
∑

j

dj ≤ etot, (3.4)

where the maximum available power is etot, and the power cost per LED at full intensity

is e.

While this approach generates acceptable images, it does not resolve all of the am-

biguity in the system. The equations representing the simulation contains redundant

parameters, since both the backlight and LCD panel can be controlled independently

at every pixel. Given a panel value pi and the corresponding pixel of the backlight Bi

for the set of light emitting diode values d such that Īi = piBi, then p̂i = 2pi and

B̂i = Bi/2 will produce the same value. All combinations of p̂i, B̂i are valid provided

that Īi = p̂iB̂i. The perceptual metric does not resolve this ambiguity of what the exact

solution should be. While a useful guide in the minimization problem, the metric is an

insufficient to act as a constraint. It effectively defines a measure where all solutions of

the same least squares error are considered the same.

In the space of valid solutions there is room for differentiation. Different applications

might sacrifice quality defined by the objective function for other image features such

as peak luminance and contrast. The power feasibility constraints do not provide mean-

ingful controls over the space of possible solutions. We need additional definitions to

obtain unique solution, and define what would be the best pairing.

When determining the best pairing of images, there are multiple factors to consider.

Numerous attributes, such as dynamic range and reconstruction error, are related to the

inherent tradeoffs between range and quantization of the system. The set of LCD panel

driving values can be divided between increasing the dynamic range and compensating
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for the low frequency of the rear panel. The panel can distribute image values across

its entire range of driving values and contribute to the dynamic range, or it can be

driven at some median value and the values above and below that used to correct for

discrepancies between the backlight and the desired image.

Numerical Optimization. The numerical solution to this optimization problem is straight-

forward to obtain. Since the objective function is a nonlinear least-squares problem,

there are many specialized solvers for this specific system of equations from highly-

optimized software packages to lsqnonlin function in Matlab. lsqnonlin employs

a trust-region method to obtain the solution and requires the Jacobian of the objective

function, and the analytic representation of our system allows us to efficiently evalu-

ate the necessary derivatives. While the system is large, the majority of the unknowns

are the LCD pixels p, a sparse system. This sparsity, and the fact we can evaluate the

derivatives allows us to solve the system efficiently enough to store in memory.

As seen in Figure 3.3, the numerical optimization method produces accurate results.

However, we do not focus our attention on it. More effective means of obtaining so-

lutions exist, which we describe in detail in Section 3.2. While we employ the solver

method to validate our formulation of the problem, in practice we do not make use of it

for processing images.

3.1.2 Observations

Figure 3.3 shows a sample of the LED and LCD outputs of the algorithm for a given

input. The backlight image is a low-frequency version of the original and contains the

major features of the original image. The LCD panel contains the remaining image

content adjusted for the backlight. The difference between light and dark regions is more

uniform, since the backlight represents a portion of the luminance difference. Similar to

the work of Chiu et al [12] described in Section 2.2.1, the panel has reverse gradients

around light sources to compensate for the light leaking across the edge in the backlight.

Recall that the input image is HDR, and must be tone mapped to be printed, while the

two resulting images are LDR and can be shown directly.
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Figure 3.3: The left image represents the original HDR image tonemapped for print. The

center image represents the low-frequency luminance image of the backlight, and the

right image represents the LCD image compensated for the backlight. (Image courtesy

of Greg Ward.)

Obtaining a larger dynamic range implies less ability to correct for the back panel; the

limited number of bits in the LCD panel can either be used to extend the dynamic range

or to correct the low frequency of the backlight. While the resulting image may be less

accurate according to the objective function, the larger dynamic range can subjectively

preferable. This tradeoff is application dependent; casual viewers and professionals have

different requirements. Unlike conventional displays, HDR display algorithms require

some additional information of what attributes are most important to process it best.

3.2 Performance-Related Modifications

The above discussed optimization method has one major disadvantage, the amount of

time it takes to obtain a solution. The system of equations is very large; m × m + n

where m is the number of LCD pixels, and n is the number of LEDs, approximately 2

million by 2 million for DR-37P. The functions of the simulation and perceptually uniform

transformation are complex, and the system must iterate. A full solution can take hours

per image, restricting the above formulation to precomputed applications.

Precomputation is infeasible in most real-world applications. A monitor has to dis-

play images in real-time, and the base requirement of 60 Hz implies that the algorithm
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must complete its work in under 12.5 ms, using computational resources that could be

included in the display, such as a graphics processing unit (GPU) or a field-programmable

gate array (FPGA). Additionally, each display model has a different set of intrinsic param-

eters determined by its construction, and while most of the variation between different

versions of the same model can be eliminated by calibration, it might not be possible

to completely remove the variation. Images would have to be specifically processes

for each model and type of display. This solution would not be forward-compatible or

practical in a mixed hardware environment, and would require each application to have

knowledge of and to support the intrinsic parameters of each hardware revision.

It is necessary to find new ways to accomplish the same tasks more effectively. Equa-

tions outlined above are highly structured, and we can take advantage of this structure

to find ways to reduce the complexity of functions involved, reduce the size of the sys-

tem of equations, and reduce the number of iterations.

The first major optimization is to discard the perceptually uniform transformation.

It is too computationally intensive to feasibly model in real-time. Instead of including

it in the algorithm, we use it to verify algorithms using test sets of images, to check

that our methods produce acceptable results. We test the algorithms and parameters

chosen to ensure they come as close to adhering to the bounds as possible. Beyond

that, we have identified three major areas of optimization: reformulating the system to

better match the hardware construction, breaking that system down into several more

tractable sub-problems, and obtaining approximate solutions for those problems.

3.2.1 Simplification of Simulation

The constraints enforced by the HDR display hardware configuration are of particular

importance; an examination of the display hardware and its effects upon the optimiza-

tion function can give some insight into what is being performed. The dual-modulator

hardware setup forces all algorithms to share some fundamental characteristics which

can be potential targets of optimization. The two main considerations are that the orig-

inal image content must be distributed between the LCD panel and LED backlight, and

that the LCD panel must account for the low frequency of the backlight.
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=

I   = diag( p ) W    d

Figure 3.4: Sparsity pattern of simulation matrices.

The formulation of the simulation above is not the most effective means of producing

displayed luminances. While described as a functional mapping in Equation 3.1, it can

be shown to be a linear system. The structure of this system is apparent in a sparsity

pattern of the matrices, as seen in Figure 3.4. From the formulation of convolution of

δD by the PSF of the diffuser we have

I =p
∫ ∞

−∞
PSFD(τ) · δD dτ (3.5)

p

∫ ∞

−∞
PSFD(τ)

∑
j

djδ(tj − τ) dτ (3.6)

p
∑

j

dj

∫ ∞

−∞
PSFD(τ) · δ(tj − τ) dτ (3.7)

p
∑

j

dj PSFD(tj) (3.8)

where tj represents the difference in positions of the pixel under consideration and

the LED j. Since PSFD(tj) is constant for a given LED layout and diffuser, we can

precompute the values, and this is equivalent to the linear system

I =diag (p)Wd, (3.9)

tied together by the m × n weighting matrix W , where m is the number of pixels and

n is the number of LEDs. This matrix W accounts for the layout of the LEDs and PSF
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of the diffuser, where each column contains the intensity of LED j at each of the LCD

pixels.

3.2.2 Problem Decomposition

The result of observation is that we do not need to solve for ideal LCD pixels simultane-

ously to solving for ideal LEDs, and instead we can break down the large problem into

two sequential steps. Solve for the LED values, and create the matching LCD image.

However, this alteration changes the formulation of the problem being solved.

The naive nonlinear optimization does not exploit this fact to the full extent, and

solves for both LEDs and LCD pixels simultaneously. Without perceptual transforms,

the pixels of the LCD panel are linearly independent since diag(p) is a diagonal matrix

by definition. Since the LCD panel is a modulator of the backlight and because the

simulated image I should match the desired image Ī as closely as possible, it is simple

to choose p for a given B. For any given backlight image B = Wd, we set a given LCD

pixel to

p =
Ī

Wd
. (3.10)

to be equal to the respective pixel of the original image divided by that of backlight.

Figure 3.5 demonstrates this relation visually. The backlight image in the center is a

low-frequency approximation of the original image on the left. The approximation is

unable to reproduce the high-contrast boundary; producing less light than desired on

the brighter side and more light than desired on the darker side. The LCD image in

Figure 3.5 right compensates for this blur by letting more light through on the brighter

side and less light through on the darker side, so that the end result is a high-contrast

boundary between two uniform regions of luminance.

Disregarding the LCD panel means that we are attempting to solve a different sys-

tem. The separation removes all influence of LCD panel, and its correcting effect is no

longer present when solving. Instead of solving for both the LCD pixels and LED values

that yield the simulated image with the minimum difference to the original, we are now

solving for set of LED values that minimize the difference

min
d

∥∥ Wd− B̄
∥∥

2
(3.11)
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I Wd p

Figure 3.5: Blur correction steps. From the input image (left), the low frequency back-

light (center) is computed and simulated, which is used to compensate the original to

produce the LCD panel image (right).

from the target backlight image B̄. Because W represents the convolution of the δD by

the PSFd in the original Equation 3.1, determining the ideal LED values is essentially a

de-convolution problem of B̄ to find d.

In order to take advantage of this separation, we need to be able to determine

the target backlight B̄ from desired image Ī . We begin by considering the idealized

projector version, where we initially assume that both the projector and the LCD panel

are perfectly linear, and have the same dynamic range. For now, let us also assume

perfect alignment and neglect the blurring of the projector image. Recall that the front

panel is an optical filter of the rear image. Under these assumptions, the target luminance

can be achieved by normalizing the intensity range of the display and the image to be

presented to [0, 1], and using the square root of this normalized intensity to drive both

the projector and the LCD panel. The even split between pixel values on the projector

and the LCD panel is preferable to a scenario in which one value is very large and the

other is very small, since quantization artifacts are relatively large for small values. Also,

if different combinations of values are used for adjacent pixels of the same intensity, the
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imperfect alignment present in real hardware systems would cause significant artifacts.

The same basic principle applies with the LED version, but instead of the projected image

behind the panel, there is diffused grid of LEDs.

Given that we can determine the target backlight, we only need to solve for the

LEDs values to produce that backlight. It is possible to decouple the de-convolution that

determines LED values and the simulation that is required to determine the matching

LCD image. In the case where there are m pixels and n LEDs, this reduces the original

system of size m × m + n to 2 systems of size m × n, where the de-convolution

must solve an m × n system and the simulation must evaluate an m × n system. This

decoupling yields an immense performance increase, since there are roughly 1 000 times

fewer LEDs than LCD pixels.

3.2.3 Approximate Solution

Additionally, the constraint differences between the two stages allows us to optimize

each individual stage in ways that would be impossible if we solved them as a combined

problem. Thus far the operations we have presented have not altered the resulting value.

The remaining changes to be introduced cause the solution obtained to differ from the

exact solution. The error introduced is acceptable if it is not detectable by the HVS, and

is a necessity for increasing the performance to achieve the required the real-time rates.

In the case of the projector-based display, because the support of PSF is sufficiently

small, we do not need to solve for the influence of adjacent values, and instead just sim-

ulate the effect of the diffuser. We first choose a simple estimate of what the projector

intensity should be as described above, then simulate the effect of blurring, and choose

pixel values of the LCD panel that compensate for these effects. In the case of the LEDs,

the support of the PSF is much wider, so many LEDs influence the value at a given pixel,

and the full de-convolution is necessary.

In both the projector and LED configurations, the low spatial frequency of the back-

light implies that the target backlight would also be low-frequency. In the case of the

LED-based display, there are comparatively few elements of the backlight to solve for,

and the PSF is much lower frequency. We can downsample to a lower resolution and
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solve that system without significant artifacts, reducing the m number of equations in

the system to the number of LEDs, n.

Additionally, instead of addressing all LEDs, we consider a smaller neighborhood

when computing values through de-convolution. Considering LEDs that are more dis-

tant has diminishing returns; they are less able to contribute light to the point being

considered, but have the same computational cost per LED. Also, the properties of the

HVS and dynamic range of the LCD panel limit the distance at which LEDs can still be

adjusted to change a specific pixel value. The shape of the ocular PSF defines an area

known as veiling glare where changes in luminance cannot be detected because the

light scattering obscures the details. Outside of this area, increasing the intensity of the

LCD beyond the locally desired value would be detected. This relation can be seen in

Figure 3.6.

Figure 3.6: This demonstrates the restriction veiling glare places on LEDs to be con-

sidered. If more light is needed at LED 1 (left), the intensity of LED 2 (center) can be

increased as long as it is less than the veiling glare. However, LED 3 (right) is not covered

by the veiling glare, and cannot be adjusted without detection.

While the weighting matrix is dense, the number of LEDs available to be freely

altered with respect to a given LED is quite limited and the resulting matrix is a relatively

sparse, banded matrix. Unlike de-convolution, veiling glare cannot be used to lessen

the computational complexity of simulating the backlight B for a given d, and we have
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to consider all LEDs at each pixel to accurately represent the full extent of the PSF.

However, the PSF is low frequency and the simulation can be done at a lower resolution

and upsampled to the full resolution without significant perceived quality difference.

This reduces the evaluation of m × n system by a large constant factor, and gives a

separate tunable quality parameter.

Before decoupling de-convolution and simulation, the solver had to be run until con-

vergence to ensure the LEDs and LCD matched. Not only must the methods produce

the desired image, a pairing of LCD pixels and LED values must be matched. Any choice

of p and d that do not approximate the correct value will produce highly objectionable

artifacts. While this is mostly addressed in the discussion of calibration in Chapter 4,

some of the issues are algorithmic. Because the reformulation ensures they are always

matched, iterating the solver for the de-convolution acts as an additional means of im-

proving image quality, as opposed to being a necessary step in generating a usable set

of p and d. Convergence is no longer required, and we have the option to perform

fewer iterations. This substantial performance improvement is a necessity for supporting

interactive applications.

3.3 Implementation

Considering the formulation of Section 3.1 and the optimizations of Section 3.2, we

now detail how in practice we process images for display. Based upon the previously

detailed arguments our approach is decomposed into several stages, with the corre-

sponding flowchart and images in Figure 3.7:

1. Given the desired image Ī , determine target backlight B̄.

2. Determine the LED driving levels d that most closely approximate B̄.

3. Given d, simulate the resulting backlight B.

4. Determine the LCD panel p that corrects for the low resolution of the backlight

B, and when combined with B by the display optics, approximates Ī .
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Figure 3.7: Flowchart of stages of the implementation. The scene-referred input image

is used to determine the desired backlight, which in turn is used to determine the LED

driving values. The backlight is simulated from these driving values, and this simulation

is used to compensate the original image.
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We address the details of the algorithm on the two hardware platforms currently used

in production, a graphics processing unit (GPU) and a field-programmable gate array

(FGPA) located in the HDR display. We also describe the methods used in the software

testbed to provide high-quality comparisons by which we can judge the chosen opti-

mizations. In Figure 3.7, we show images depicting the output of each stage of the

process, and for comparison show a tone mapped version of the original HDR image in

Figure 3.8.

Figure 3.8: Tonemapped original HDR image for reference. (Image courtesy of Greg

Ward.)

3.3.1 Target Backlight

The first stage takes the desired image Ī and produces the target backlight B̄. The

input Ī should be in photometric units, and can be in color but should have the same

chromaticity, white point, and primaries as the HDR display. The output B̄ will be a

monochromatic image in photometric units.

In order for the subsequent steps to proceed correctly, the luminances of the image

must be within the range displayable by the monitor. Our task is to clamp the values of Ī

to the range [0, Imax]. The definition of Imax is more complicated than a conventional

display and is the topic of Chapter 4, but for the purpose of this discussion, we can

assume that the value is known.
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If it is a color image, we need to convert it to a single-channel luminance1 representa-

tion Y because the backlight is monochromatic. This conversion is to take the maximum

of the 3 channels of a given pixel, Yi = max{Ri, Gi, Bi}. One would be inclined to

think that Y should be the average or, given the perceptual focus of the discussion, CIE

Y . However, because the LEDs are the only way to add light to the system, the B̄ must

contain luminances therefore at least as high as Ī at every pixel. The only way to ensure

this is to take the maximum value, any weighted average will not provide enough light

in some cases.

The next step is to divide the dynamic range between the two displays by taking

the square root of the clamped luminance image. The actual exponent depends on the

ratio of dynamic ranges between the LCD panel and the LEDs2, ρ. Because the desired

properties are only defined on the range [0, 1], we first normalize the image, raise to it

to the appropriate power, and then scale back to photometric units.

Figure 3.9: Output of target backlight pass.

The final step is to take advantage of the low frequency backlight, and to down-

sample to the resolution of the LED grid. In software, this can be implemented by any

1In this case Y is not the same as the CIE tristimulus value Y . We only intend it as a grey-scale represen-

tation.
2Since a single LED can be turned off entirely, it could be considered to have an infinite dynamic range.

However, for any collection of LEDs, their dynamic ranges are determined by the PSF shape and the values of

their neighbors. In the current configuration, this is approximately 1/2.
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properly filtered resize function. On the display FPGA, this is implemented as the average

of neighborhoods of pixels around LED positions. On the GPU, this is implemented by

recursively taking block averages to work within the finite number of texture accesses

available. Figure 3.9 shows the output of this stage: a monochrome, low-resolution

sampling of square root of the original image.

3.3.2 Deriving LED Intensities

This stage approximates the solution the de-convolution problem and efficiently deter-

mines the LED driving values. The process takes in a target backlight B̄ in photometric

units, and produces driving values d ∈ [0, 1] that minimizes the difference with the tar-

get backlight. As stated, the full solution to this problem would require minimizing a

system with as many equations as there are LEDs, subject to the constraints of feasible

values and power consumption. We discard the constraints and clamp the output to

feasible values [0, 1], and scale the final result to adhere to power limits if necessary.

Without constraints, the problem reduces solving the linear system of equations from

Equation 3.11

Wd = B̄

where B̄ is the image of the target backlight. While generally less computationally

intensive than a minimization problem, the cost of this process is still prohibitive, and

thus we desire an approximate solution for real-time applications.

Direct methods of solving systems of linear equations do not decrease the norm

with each iterate, and have to be run to convergence to get useful information about

the solution. Iterative solvers, on the other hand, make incremental improvements; a

few loops will give some meaningful progress and we can stop if the intermediate result

is sufficient. Additionally, because the de-convolution is numerically unstable, we do not

want to iterate too much; running more iterations may actually decrease the quality of

the solution. We chose one of the simplest iterative solvers, the Gauss-Seidel method,

on which to base our implementation. The basic Gauss-Seidel iteration

d
(k)
j =

B̄j −
∑

i<j wjid
(k)
i −

∑
i>j wjid

(k−1)
i

wjj
(3.12)
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is the result of the reordering of the system of equations and solving for the unknowns

dj . Every step, a new estimate d(k) of the solution is chosen by comparing the current

value of the system to the desired value. The new solution estimate is used to update

the value of the system.

Modifications to Solver. We make several modifications to this formulation to suit

our purposes. Instead of considering all other LEDs for each LED, we use a smaller

neighborhood N (δj), and only perform a single iteration. The resulting computation is

a weighted average of the neighborhood of LEDs. Given a desired backlight image B̄,

it tries to account for light contributions from other LEDs weighted according to PSFD.

By choosing d(0) = B̄, it collapses to

dj =
B̄j −

∑N (δj)
i wjiB̄i

wjj
(3.13)

for a given LED j, where wjj is the value of the pointspread for that LED, or simply the

max(PSFH). Then, for a given LED j, the desired luminance value of the backlight

at its position is compared to the luminance coming from the surrounding LEDs. The

value of LED j is chosen to compensate for any disparity between the desired backlight

and the light present. The results are clamped to [0, 1] and passed to the subsequent

simulation stage and the LED controller hardware in the display.

While the method draws inspiration from iterative solvers, iteration is not feasible

with the current set of optimizations. The pointspread has wider support than the radius

of N (δj), the set of LEDs we choose to alter is based partly on efficiency and partly

on veiling glare. The result is that the full extent of the PSF is not represented in the

de-convolution. Some amount of the light contributed by the tails of the PSF of each

LED is not within the radius that is accounted for. In a single iteration, as in the weighted

average case, this is not concern. The only input is the original backlight, and we are not

relying on any incomplete intermediate results. With multiple iterations, the intermediate

backlight representations B(k) do not match the result of simulating the corresponding

Wd(k). The limited range of the update causes the iterates to diverge and the artifacts

in the resulting d become progressively more significant. In order to prevent this, we

would have to simulate the backlight properly at every iterate; an operation that is too
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costly to be practicable.

Figure 3.10 shows the output of this stage. While low resolution, this image appears

similar to applying a de-blurring filter to the target backlight of the previous stage. The

operation cannot restore the original high-frequency content of the image, but it can

adjust the LEDs to account for blurring. Compared to the ideal backlight B̄, the LED

values have darker respective blacks and brighter respective whites to account for the

scattering that the diffuser will introduce.

Figure 3.10: Output of pass to determine LED intensities.

LED Grid Representation. This operation is implemented differently in software, on

GPUs, and on the FPGA. All three platforms can implement the math in a straightforward

manner, and the software and FPGA implementations can make use of data structures

designed to represent the hex grid. GPUs, however, can only work in terms of texture

operations, and must figure out a way to represent the hex grid using a regular grid.

Current hardware can perform dependent reads of the form A
[
B[i]

]
to provide

pointer-like indirection, and the positions of each neighbor of the LED could be accessed

via a lookup table (LUT). However, GPU architectures are designed to accelerate imaging

operations and assume that memory access is coherent. Disregarding this coherency

assumption comes at a high performance cost, and significantly impacts the efficiency

of any algorithm. It is possible to map the hexagon grid to a subset of a regular grid.
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If anisotropically scaled, the LEDs fall on a regular grid, and occupy every other cell in

the form of a checkerboard as seen in Figure 3.11. We take this scaling difference into

consideration when downsampling, so that the position of each real and fake LED maps

to a pixel, resulting the real LEDs being distributed as if on a checkerboard. We then

blur the image to distribute information from the pixels that do not represent LEDs to

the pixels that do. Neighboring LEDs are obtained using an image filter with modified

sample positions that map to adjacent real LEDs. The result of this is read out from the

positions of the real LEDs into a vector that stores the final result.

Figure 3.11: Remapping of hex grid to regular grid necessary for GPU computation.

3.3.3 Backlight Simulation

The backlight simulation stage takes the LED values d ∈ [0, 1] from the previous stage

and produces a simulation of the backlight in photometric units. We need to forward-

simulate the low-frequency image of the LEDs generated by the diffuser in order to

derive the LCD pixel values, and then implement the reconstruction by convolving the

LED intensities by the PSFD. Since the PSFD is low frequency, all of the following

methods can be implemented at a lower resolution and upsampled. If performing at a

lower resolution, we need to ensure the pixels of the simulation image are aligned with

the LEDs to avoid rounding error.

We use different approaches for software and hardware implementations. In soft-

ware, we can implement the simulation directly as a convolution. An all-black image

with single pixels at the positions of the LEDs set to the the respective driving values is

convolved by the PSFD scaled in photometric units. On the FPGA, we directly evaluate
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each pixel by reading the value of the PSFD for the distance to the current pixel from

a lookup table (LUT) and modulate it by the current driving value. On GPUs, we use

a splatting approach, and simply draw screen aligned quadrilaterals with textures of the

PSF into the framebuffer. Each texture is modulated by its driving value and we use

alpha blending to accumulate the results.

As we discuss in Section 4.3, the tail of the PSF can be very long. While we simulate

the pointspread function with wide support, we truncate at some distance for efficiency.

However, the discontinuity at the point of truncation can cause artifacts in the final

image, so we must smoothly transition the PSF to zero at the point we truncated. This

difference in PSF intensity along with the missing intensity outside the area used lead

to differences in the final pixel luminances in the simulation and the pixel luminances

of the desired image. While insignificant when compared to the peak luminance of the

display, this disparity can contribute to a perceivable mismatch in dark regions. Because

the spatial frequency of the remaining portion of the PSF is very low, we compensate

by adding a term u to each pixel of the backlight image to represent the light not

accounted for. u is chosen to be a fraction of the set of LED driving values d, where the

exact amount is determined by the difference in energy between the actual PSF and the

truncated simulation.

Figure 3.12: Output of backlight simulation pass. In this image, features corresponding

to the LED positions are visible because the image is linearly scaled. These features are

not visible when the physical display is viewed because of human lightness sensitivity.
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Figure 3.12 shows the output of this stage. As much as it is possible, it should resem-

ble the image in Figure 3.9 before downsampling. Though it rarely will match perfectly,

it should be close. More importantly than exactly matching the target backlight, the

output should match the actual backlight produced by the optics of the hardware. This

consistency is essential to obtain the proper output from the next stage.

3.3.4 Blur Correction

Given the simulated backlight B̄, we need to produce the matching LED image p. We

correct the original image Ī for the difference due to the blurriness of the backlight.

Since the LCD panel modulates backlight, recall Equation 3.10 and the fact that

p =
Ī

B
,

we divide the original image by the backlight simulation to get blur corrected image.

This operation is simply an element-wise division, applied to each channel of Ī if it is

color, with the addition of an ε to compensate for zero values in the simulation. The

result is clamped to the range [0, 1] and sent to the the LCD controller hardware.

Figure 3.13: Output of blur correction pass.

Figure 3.13 shows the output of this stage. It displays the same characteristics as

the LCD panel image in Figure 3.3. Since the result was obtained by dividing by a

low-frequency version of the original image, the LCD panel contains the same reverse
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gradients as the work of Chiu et al [12]. The LCD image still contains all of the high-

frequency and color information as the original image, but it has a more uniform set of

low-frequencies to provide a match the backlight which contains them.

3.4 Error Diffusion

The 4 stages outlined in the previous section are capable of producing high quality im-

ages, but can be insufficient in certain circumstances. The numerous computations at

lower resolutions, approximations, and other shortcuts accumulate with each pass and

the LCD panel is left with the task of correcting for all of the inaccuracies.

3.4.1 Rationale

It is often not sufficient that simply p be in the range [0, 1]. In the ideal case, with a high-

frequency backlight, discussed above both B̄ =
√
Ī and p =

√
Ī . When the backlight

is low-frequency, the formulation of p changes and includes a term cB to account for

the difference between B̄ and
√
Ī . In the real system with a low-frequency backlight B

that is only an approximation of the desired B̄, then p is defined as

p ≡ cB
√
Ī , (3.14)

where cB = B/B̄. If cB becomes too large or too small then p is either rounded

to 0 due to the 8-bit quantization or clamped to 1 since the LCD panel is LDR. Either

case means the loss of color and high frequency information that only the LCD can

represent. The limited bit depth and dynamic range of the LCD panel means that it

cannot completely compensate for the low frequency backlight and still represent all of

the image information, but this inherent loss is acceptable as long as its below perceptual

limits.

Consider the pathological case of a sinusoidal curve with an amplitude of roughly half

the dynamic range of the LCD panel, with some frequency too high for the backlight to

represent. All of the dynamic range of the LCD panel is needed to represent the high-

frequency signal. If cB is any value other than 1, there will be information loss as seen
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in Figure 3.14. Some of the loss on the dark end can be dismissed with veiling glare, it

is still a big concern in bright areas. If the backlight is not sufficiently bright, then the

LCD panel goes to the driving value 255 and loses all texture detail. Many professional

users, such as in the medical imaging field, require stronger guarantees of the quality of

the content on the LCD panel.

 0  1  2  3  4  5  6

 0  1  2  3  4  5  6

Figure 3.14: Difference between desired and actual p depending on cB . Note clamping

of values over p = 1. In the top left image, the low frequency component (green)

matches that of the intended image (red), and the high frequency component is ac-

curately reproduced on the LCD panel (top right). In the bottom left image, the low

frequency component does not match the intended image, and the resulting LCD panel

image is clamped (lower right).

We must perform some additional operations to ensure that the LED values d better

approximate the optimal backlight B̄, so that cB is closer to 1 and the LCD has more of

its bit depth available for representing high-frequency detail and color. One solution is to

fully simulate the iterates of the de-convolution stage in Section 3.3.2, but this does not

directly address or make any strong guarantees about the particular problem presented

here.

Suppose that we wish the average LCD panel pavg to equal some value α and

we choose the LED values d so this is the case as often as possible. This task is the
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minimization of a slightly different linear system to that of Equation 3.11. This operation

would be something too computationally intensive for all the reasons outlined above

if done from scratch. As we already have a reasonable approximation of B̄, we can

just pick changes to d to accomplish the goal. After de-convolving to get the LEDs and

simulate the backlight, we then modify both to improve the value of cB .

3.4.2 Backlight Update Process

If we assume the current d are close to forming B̄, then these changes ∆dj should

be small. Instead of attempting to solve for all LEDs simultaneously, we take a greedy

approach and iterate over the LEDs 1-by-1. We pick the best value for that LED, update

d and the simulation B, and then the subsequent LEDs correct for the new backlight.

For each LED, we choose the value that minimizes the difference between cB and 1 at

that point, yielding the relation

Ī −∆djWj

Wd
= α (3.15)

which can be formulated as the least squares problem of dj . Substituting B for Wd the

problem becomes ∥∥∥ Ī −∆djWj − αB(j)
∥∥∥ = 0, (3.16)

whereB(j) is the backlight after the first j LEDs have been updated. Solving this, we get

the following formulation in terms of image manipulation over the set of pixels under

consideration (x, y)∑
x,y

(
Ī(x,y) −∆djSj,(x,y) − αB

(j)
(x,y)

)2

Mj,(x,y) = 0 (3.17)

where Sj is the texture splat of the pointspread image for the LED location associated

with Wj . Similar to the constrained radius used in the de-convolution to find the LED

driving values in Equation 3.13, we add a masking term Mj to define a portion of the

image in a neighborhood around the current LED j, such thatMj(x, y) = 1 if pixel(x, y)

is within some radius of LED j, and Mj(x, y) = 0 otherwise. Solving that equation for

∆dj , we get

∆dj =

∑
x,y Sj ĪMj − α

∑
x,y SjB

(j)Mj∑
x,y S

2
jMj

. (3.18)
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This algorithm proceeds in an identical manner to the PSF splatting method for simulat-

ing the backlight, and operates as a post-process to the output of the simulation, and

iterates over the LEDs in scanline order. For the current pointspread image Sj , the corre-

sponding sections of Ī andB are picked and their respective elements are multiplied and

then summed together. The resulting dj +∆dj is written to the LED driving values, and

the backlight is modified accordingly by accumulating ∆djSj into B. The new d can be

passed onto the LED controller as normal, and the resulting B is used as the input for

the blur correction in Section 3.3.4. Unlike the problems with iterating in Section 3.3.2,

this operation can be repeated multiple times. Because the update fully simulates the

change in pointspread contribution, it avoids the problem of the backlight representation

diverging from the actual values. However, it is too computationally intensive to be run

more than once per frame on currently available hardware.

3.4.3 Corrective Image Filter

This design makes one incorrect assumption: that all of the image data being considered

is, in fact, correct. This is not true; half the LEDs in the area under consideration have

already been modified to the new value, and half have not. If the ∆d for the current LED

was determined from the current backlight, then any modification to a subsequent LED

would reduce the accuracy of the current estimate. Even though ∆d is usually small, the

accumulated error can be significant. We need to make the algorithm properly account

for the changes that will occur after that iteration.

We can utilize the way in which the algorithm iterates over the LEDs to accomplish

this goal. Because it iterates in scanline order, we know that the LEDs above and to

the left of the current LED have already been updated and are accurate, while the LEDs

below and to the right have not yet been updated and are inaccurate. Even if we have

not computed what the ∆dk is for some k > j, we have the value of the image I and

the backlight B at that point. We can assume that the value of LED k will change by

the difference between I and B, and weight will change by the opposite amount, and

can design an image filter that performs the corrective measure. Adding that filter as a
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term to Equation 3.17, we get∑
x,y

(
Ī(x,y) −∆djSj,(x,y) − αB

(j)
(x,y)

)2

Mj,(x,y)F(x,y) = 0, (3.19)

which, when solved for ∆d like Equation 3.18 yields

∆dj =

∑
x,y Sj ĪMjF − α

∑
x,y SjB

(j)MjF∑
x,y S

2
jMjF

(3.20)

and operates in the same manner as the original process. Since the problem is already in

terms of differences ∆d, all that is required is to make a filter relative to the LED position

that is positive for accurate LEDs and negative for inaccurate LEDs. Figure 3.15 shows

the difference in the results of the algorithm for filter inclusion. The left image is the

result of the process without any error diffusion; because it does not consider the full

extent of the simulation, the LEDs immediately outside the bright area do not account

for the light spilling over from the bright feature. The area is too bright and will be

made darker by the error diffusion pass. Without the masking term, the updates do

not consider that the subsequent LEDs around it will be darkened as well and it over-

compensates, as seen in the center image. With the masking term, the LED correctly

accounts for the final light, as seen in the right image.

Figure 3.15: Comparison of error diffusion to original method.

Finally, the value of α can be freely set to achieve the desired displayed image. A
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value of α = 1 will cause the backlight to be the same intensity as Ī , causing the op-

eration to match the target backlight B̄ as best it can. Error diffusion acts as a second

iteration to achieve the desired image. A value of α = 0.5 causes the backlight to be

twice as bright as Ī , resulting in pavg = 0.5 and there being as many bits available for

correction as possible, minimizing quantization artifacts in the LCD panel. More compli-

cated schemes, such as choosing the value of α depending on the local neighborhood,

are also possible and can be employed to provide feature-specific tone scaling of the

backlight.

The result is a method for adjusting the backlight closer towards the ideal solution

of the system without a significant change in computational overhead. It can addresses

issues that other parts of the algorithm do not, including details with high-spatial fre-

quency. Additionally, it provides extra parameters to tune the image processing to the

needs of the user.
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Chapter 4

Measurement and Calibration

The previous chapter describes how to process images for display on an idealized rep-

resentation of the display. The focus of this chapter is to describe the transformations

necessary to make that process work in practice, to correct for artifacts of the hardware

setup and provide a device that linearly responds over a given range of intensities.

Images sent to the LED array and the LCD panel are optically combined to form the

final image. When the software simulates the backlight and compensates the LCD image

for that backlight, it assumes that the images accurately represent the luminances being

produced. Inaccuracies in one can interact with inaccuracies in the other, and otherwise

small errors can be significantly amplified and therefore become detectable. In fact, a

full solution to the nonlinear optimization of the LEDs and LCD pixels using approximate

calibration data almost always looks worse than the approximate solution using accurate

calibration data.

This level of calibration implies accurate measurement of the display characteristics.

Many attributes of the display must be measured to ensure that the simulation results

are correct. These include the LED array alignment, the luminances and response of

each LED, the LCD panel response, and the pointspread of the backlight diffuser. All

attributes related to light intensities are measured in calibrated units, which provide the

necessary means of comparing the original image to the simulated result.

4.1 LED Array

Two main features of the LED grid need to considered. Without accurate information,

the simulated backlight will not match the actual backlight. In order to achieve this,
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the position and response function of each LED must be known. Position information

determines the correct placement of the PSFs used in the simulation, and response in-

formation determines the correct luminance for a driving level.

LED Array Alignment. The hardware schematics serve as a starting point for the cali-

bration data. The simulation already knows where the LEDs should be positioned, and

needs to be provided with a difference between the actual and desired positions. These

differences can result from an individual LED being positioned incorrectly on the circuit

board, or the circuit board being positioned incorrectly relative to the LCD panel. In

a production scenario, these sources of error are considered manufacturing challenges

to meet quality control tolerances. The majority of the remaining misalignment is be-

tween the LCD panel and the circuit boards, which are generally accurate within 3 pixels.

Humans have poor sensitivity to the low-frequency backlight, and further calibration is

not normally necessary. If desired alignment can be further calibrated by examining the

difference between the location of several LED PSFs and the corresponding LCD pixel

positions.

LED Response. Due to the variance in LED construction and the circuitry that supplies

power, the response of the LEDs is neither linear nor is it the same for each LED. Without

calibration, they do not respond linearly to driving values and they have different peak

intensities. Additionally, the LEDs do not power on at a driving value of 1, and reach

peak intensity at driving values less than 255 due to power supply issues. LEDs also

significantly vary in response with the ambient temperature of the board.

Some of these issues, such as variance with temperature, must be addressed in the

hardware design. These adjustments include, sensors to actively change the driving

values to account for the change. Others can be measured after construction, and

compensated for with a calibration file. The scope of this calibration task is beyond the

breadth of this work, but work on efficiently measuring and calibrating the LED array

is underway by Lau et al [38]. We assume that the calibration procedure has been

performed and that we can make use of the results. In practice, the hardware controller

takes care of the response linearization, and the only parameter we have to consider is
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the LED peak intensity, which is provided in absolute units of luminance.

4.2 LCD Panel Response

As discussed in Section 2.4, the LCD panel has a nonlinear response and the input signal

must be modified to account for the response. The process of adjusting the LCD panel

image to compensate for the backlight in Section 3.3.4 takes place in linear space, and

the LCD panel modulation of the actual LED luminances. We need to create a new

version of the image from the inverse of the LCD response that will cause the LCD panel

to respond linearly.

As discussed in Section 2.4, the LCD panel controller circuitry approximates a power

function of roughly 2.5. The production of correct images requires compensating for

this nonlinearity, and using that to produce a new image sent to the LCD controller. To

obtain the inverse, we follow the same procedure as for LDR display calibration: we

measure the luminance of each of the LCD panel’s driving values, and represent the

inverse as a fitted function or by using a lookup table (LUT). Since the LCD panel acts

as a modulator, we do not need to capture any absolute measurement of its response,

and use a normalized function. The response of the DR-37P LCD panel is shown in

Figure 4.1.

Even though the LCD panel has the same number of bits as an LDR display, the com-

puted inverse must be stored at a higher resolution than that used for an LDR display.

The standard practice when implementing an LUT for an OETF like Rec 709 or sRGB is

to use a 12-bit lookup table based on the lightness sensitivity discussed in Section 2.4.1

and assumed contrast range of 100 : 1. That contrast range is rarely achieved in ac-

tuality since ambient light washes out detail in the dark regions and obscures the error

resulting from the 12-bit representation.

In the case of the HDR display, the backlight can be significantly brighter than for

a conventional display. The error from the 12-bit representation is still present and

can become visible with increases with the backlight luminance. A different method

is required to accurately represent the inverse of the response function and we employ

a two-part representation to efficiently store the necessary level of detail. We fit an
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Figure 4.1: LCD panel response.

analytic function such as a gain-offset-gamma model to the inverse of the response and

evaluate this continuous representation at runtime. To account for fact that the model

will not exactly match the data, we store the ratio of the fitted value and the actual value

into a LUT.

4.3 Diffuser Pointspread Function

The pointspread function (PSF) of the diffuser calibration is the most critical to accurately

rendering images. Unlike the previous attributes mentioned, the pointspread is not a

simple artifact that can be corrected for in a post-process; it is tightly coupled with the

image processing algorithm. Numerous intrinsic properties of the display are related to

it, such as the spatial response and peak intensity discussed in next section. Additionally,

its shape determines the weighting matrix W and the values used in the Gauss-Seidel

step.

The shape of the pointspread depends on more things than the diffuser. There

is a complex optical path from the time a photon leaves an LED to the time it exits

the LCD panel. The first segment of the path is the focusing element on each LED,
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followed by an empty cavity between the LEDs and the diffuser, then the diffuser itself,

which backscatters and causes inter-reflection in the cavity with the circuit boards, into

brightness enhancing films to columnate the light, and finally the LCD panel itself.

The actual PSF depends on viewing angle, but because we cannot make any as-

sumptions on the location of viewer, we do not model this in software. Similarly, be-

cause the viewer could be anywhere, the design of the optical package must ensure the

correct results for all angles. Ensuring uniformity of the PSF between LEDs is more of

an engineering and quality control issue, and we assume that we can ignore the angle

dependence of the PSF. We also assume that the shape of the PSF is the same for each

LED. With the exception of the focusing elements of the LEDs, there is little variation

in the materials used, and we find the focusing element variation to be negligible. Be-

yond that, the practicalities of storing an individual PSF for each LED is too costly to be

feasible.

The measurement procedure is straightforward. We turn on a single LED behind the

diffuser and place a camera directly in front of that LED, and capture an HDR image

of the pointspread of that LED. The HDR image can be generated using an HDR cam-

era such as the Lumetrix IQCam [43], or with an LDR camera using the algorithm of

Robertson et al [63]. Because of the variation in peak intensity of LEDs, we normalize

the measured data, and later multiply it by the peak value computed from calibrating

the individual LED intensities and responses. Figure 4.2 depicts the shape of the PSF.

Several sources of measurement error can affect the quality of the image PSF. Ar-

tifacts can appear due to the LCD pixel spacing and camera photosite spacing, and

noise present in the HDR image. For these and other reasons, we do not use the mea-

sured image data directly, but instead fit a function to it. For now, we assume that the

pointspread is radially symmetric, and we fit a function to a cross section of the captured

HDR image, a technique that can be extended to more complex shapes if necessary. The

PSF is Gaussian-like, but has a wider tail, so we model it as the sum of several Gaussians

of varying scales and widths. We recover these values by solving a minimization problem

for the relative scales and widths of the component gaussians, using the least-squares

error between the fitted function and measured data as the objective function. Finally,

we compute the radial PSF from the fitted cross-section.
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0

Figure 4.2: Pointspread function of diffuser.

Spatially-Variant Response. We have already stated that the backlight at any given

pixel is the sum of contributions from many other LEDs, so all of those LEDs must be

controlled to reach the desired luminance. However, if adjacent areas of the image are

different luminances, veiling glare places a limitation on the number of LEDs we can

control. This interdependence implies that the range of luminances achievable for a

feature depends on the size of the feature and the intensity of the surrounding area.

For the purposes of illustration, consider a uniform circular feature of one luminance

on a uniform background of another luminance. This simplification ignores some of

nuances of more complex patterns, but the underlying principles are the same. With a

larger radius of the feature, there are more LEDs that have the same desired luminance.

If the feature is brighter than the background, then there are more LEDs contributing to

the intensity at each pixel in the feature. If the feature is darker than the background,

then the brighter background LEDs are further away and contributing less light. If we

are only considering the falloff of the PSF in Figure 4.2, this does not seem to be a sig-

nificant issue. While the contribution from an LED decreases with larger distances, the

number of LEDs at any given distance is proportional to that distance, and more con-

tribute the further away you go. Figure 4.3 shows the minimum and maximum backlight
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luminances achievable for features of different radii on a 500 cd/m2 background.

Figure 4.3: Spatial response of the HDR display. Note that while the bright feature

increases rapidly towards the desired luminance, the dark feature decreases much more

slowly. Because the tail of the diffuser PSF extends for a wide distance around the LED,

a large area is required to achieve the desired result.

The compensation in the LCD panel image can alleviate this problem, but as dis-

cussed in Section 3.3 it does so at the cost of representing less high-frequency and color

detail. At some point, clamping occurs and all detail is lost. For features sufficiently

brighter or darker than their surrounding areas, the LCD is limited in its ability to alter

the intensity of areas, because the LCD can only modulate the available light within a

certain range. These limitations are most prominent for features near the peak intensity

of the display, where the LCD value before compensation is already high and there is lit-

tle room above for correction. Despite the measures in Section 3.4, it can be impossible

to make a feature the correct intensity. In that case, the panel clamps to either 0 or 1

and results in an objectionably large area of no texture detail.

Effective Peak Luminance. This insight into the relationship between feature size and

luminance begs the question of what is the value of Imax, effective peak luminance
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of the display. The display has limitations in the contrast between features and their

surrounding areas, while the image data clearly does not. For this reason, the effective

peak intensity must be less than the luminance obtained from a uniform image formed

by turning all LEDs to full. However, it is not prudent to optimize for the other ex-

treme of a single pixel at peak intensity and everything else black. In this scenario, the

HDR display is limited by the contrast of the LCD panel and offers no benefits over a

conventional display.

As with many other aspects of the display, this value is strongly dependent on the im-

ages to be displayed and the requirements of the user. We must balance the distribution

of pixel values in the image and the median contrast of boundaries with how accurate

the user requires the final image to be. Test patterns often have features of peak lumi-

nance adjacent to images of zero luminance. Similarly, scientific data, such as medical

images, can contain small features of high contrast, and require accurate representation

since the image content is being used to make informed decisions.

HDR photographs and images of natural scenes have a comparatively wider distri-

bution of these characteristics and it is less likely that the brightness of a small feature

cannot be accurately represented. We have not experimented widely with scientific im-

ages, but have empirically determined a reasonable starting value for photographs. We

compute the backlight that results from driving every LED at full intensity, and compute

the average of all the pixel luminances to account for falloff towards the edges. We then

choose Imax to be 75% of this average value.
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Chapter 5

Evaluation

This chapter presents the results of our techniques and evaluates the quality of the im-

ages produced by the hardware compared with the desired image. We make use of

Mantiuk et al’s [45] HDR VDP to perform the comparison and show that, while the

hardware limitations prevent reproducing the exact luminances of the original, a human

observer cannot readily detect the majority of the differences. We first review several

details important to interpreting the results, and then proceed to the discussion of results.

5.1 Preliminaries

Demonstration of Ocular Scatter. A fundamental claim of the hardware that the veiling

glare resulting from ocular scattering is able to mask the inability of the LCD panel to

completely compensate for the low-frequency of the backlight. Before discussing its

effects on image perception, we demonstrate that this claim is true. It is not possible

to demonstrate the claim without the utilization of an HDR display, but we can make

it clear that the claim is feasible. Figure 5.1 contains a tone mapped HDR photograph

of a red square being shown on the DR-37P. Around the square there is a large white

bloom that is the result of the inability of the LCD panel to completely compensate for

the low frequency of the backlight. The additional much smaller red bloom just adjacent

to the square is the result of scattering in the optics of the camera. If the optics of the

human eye were comparable to a modern SLR camera, then the claim would not hold,

however as described in Section 2.1.1, this is not the case and the human eye introduces

significantly more scattering than optical quality glass. The larger amount of scattering

implies that the veiling glare would be larger and the red bloom should be much wider.
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The assumption is true if the bloom appears completely red to an observer, and this is

the case with the actual system.

Figure 5.1: Demonstration of the difference between veiling glare from optics and low

frequency of backlight diffuser. Note: Original is color image.

HDR VDP Output. As mentioned above, we use the HDR VDP to compare the quality

of the image produced to the original. The method takes both the original and displayed

images on input, processes them for each stage of its pipeline, and produces a map

of the probability of detecting differences at each pixel. The VDP predicts visibility of

differences ie. if both the original and the modified are visible. In order to accurately

interpret the results presented, it is necessary to be familiar with the output. Recall from

Section 2.1.3 that after the veiling glare and luminance quantization steps the HDR VDP

processes each with a series of filters sensitive to spatial frequency and orientation. The

differences between respective filtered images are then passed to the contrast sensitivity

and probability summation stages.

Because for a particular difference between the two images, the filtering operations

are performed in the frequency domain, the location of a difference relative to the po-

sition of the associated feature is dependent on the spatial frequency of the difference.

However, for computational efficiency, the VDP does not filter the images with respect

to every spatial frequency or orientation and instead makes use of a smaller set of ori-
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entations and frequency bands. This approximation results in banded areas of detection

which, upon first inspection, appear unrelated to the feature. In reality these differences

are much smoother, and if all bands and orientations were used, these features would be

wider and more evenly defined. In this case, we do not interpret them as representative

of the exact shape of the visible difference, but rather as an indication of the existence

of a perceivable difference and its size and magnitude.

Figure 5.2 depicts the output of the HDR VDP applied to a sample pair of images.

In the case of the HDR display, the pairs of red stripes on either side of each face of the

square represent that the edge is not accurately reproduced in the displayed image. The

red bars outside the square indicate that there is more backlight than can be compen-

sated for while the red bars inside the squares indicate that the backlight is insufficient

and that the LCD panel cannot let more light through. Similarly, the angled features

inside the corners are representative of the fact that the backlight is lower frequency and

cannot represent the sharp corners.

Figure 5.2: Example of HDR VDP output. Note: Original is color image.

These issues cause the probability map to be difficult to interpret directly. While it

can be shown independently, the VDP results are considerably more readable if this map

is displayed using the image as context, and is normally presented as an overlay of the

original image. The overlay we use in Figure 5.2 and all other figures in this chapter

displays all probabilities over 95% as solid red, probabilities between 75% and 95% as a
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gradient from green to red, and does not display probabilities below 75%. The end result

is an image containing probabilities of detection between 0% and 100%. Additionally,

we list the percent of pixels in each of the two percentiles.

5.2 Algorithm Evaluation

In the evaluation of our methods, we compare the original image to a simulation of the

luminances output by the display device. The measurements taken during the calibration

process provide absolute luminance data, and we make use of it to accurately simulate

the luminances produced by the display hardware.

For the discussion of our results, we compare the output of the HDR VDP for four

images: two test patterns and two photographs. Each set is presented in the same

way: the original image is on top, the displayed image is in the middle, and the VDP

probability overlay is at the bottom. Since both the original and displayed images are

HDR, they are first tone mapped to 8 bits using Reinhard et al’s photographic tone

mapping operator [61] for display. All images were processed using the same method

and were produced using the software implementation of the algorithm running on a

3 GHz Xeon processor running Linux.

Test Pattern Figure 5.3 is a combination several different features. In the center, are

vertical and horizontal frequency gratings of different spacings, while the horizontal

white bars above and below are linear gradients. There are solid rectangles on the left,

and the outlined boxes on the right can be used to check alignment of the display. The

black level is set to 1 cd/m2 and the peak intensity is set to 2200 cd/m2. 1.42% of the

pixels had more than a 75% probability of detection while 0.71% had more than a 95%

probability.

This image is a very difficult image to reproduce correctly, especially the right side

where there is no acceptable set of values. Given the size of the solid rectangles on

the left and the relation of intensity to spatial frequency in Section 4.3, we expect the

inside red bars which indicate that there is not enough light. On the right, there are

several issues that stem from the fact that none of the outlined boxes are big enough
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to get the required light. There is too little white area to become bright enough to have

the veiling glare obscure the excess backlight in the surrounding dark areas. The bars

outside the vertical box, and the splotches on the dark areas indicate that there is too

much backlight. The larger splotches are the result of the backlight being too bright for a

large area. They do not appear adjacent to the outline rectangles because there is veiling

glare to obscure the differences in those areas. The diagonal hashing in the vertical box

indicates an LED arrangement that does not optimally match the box shape, and the

LED grid pattern is visible.

Frequency Ramp Figure 5.4 consists of alternating white and black boxes of various

widths and heights, similar to some of the DCT basis functions used by JPEG images.

Once again, the black level is set to 1 cd/m2 and the peak intensity is set to 2200 cd/m2.

1.15% of the pixels had more than a 75% probability of detection while 0.79% had more

than a 95% probability. Considering the edge contrasts and feature sizes, the algorithm

performs well, but shows the common problem of failing to maintain peak intensity

towards edges of features. The red bars inside the white rectangles indicate where the

LCD panel switched to full white causing a perceivable discontinuity. The red bars in the

corners of dark areas indicate excessive light being spilled from the two adjacent bright

areas. The number of visible differences in the upper right is due to the relation between

the feature shape and the LED grid. The packing of the LED grid is aligned horizontally,

so while thin horizontal features can be accurately depicted, thin vertical features will

cause a saw-tooth like vertical pattern that is detected. This orientation difference is

why the error is detected in the upper right, but not in the lower left where the same

features have been rotated 90 degrees.

Apartment Figure 5.5 is the first of the two photographs of real scenes and depicts

an indoor scene. The values are roughly calibrated to absolute photometric units, and

the minimum value is 0 cd/m2 and the maximum value is 1620 cd/m2. 0.26% of the

pixels had more than a 75% probability of detection while 0.16% had more than a 95%

probability. Compared to the test patterns, it has noticeably less error. Most natural

images do not contain such drastic contrast boundaries as the test patterns, and the
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Figure 5.3: TestPattern.



Chapter 5. Evaluation 80

Figure 5.4: FrequencyRamp.
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result is considerably fewer areas where the display is not able to accurately represent

the image. Most of the error is in the small bright reflections on the balcony, or in the

reflection of the lamp in the TV, which probably are not of much consequence.

Moraine Figure 5.6 is a sample of an outdoor scene. Again, the values are roughly

calibrated to absolute photometric units. For this image, the minimum value is 0 cd/m2

and the maximum value is 2200 cd/m2. This image is an example of an image that

is perfectly represented on the display with 0.0% of the pixels had more than a 75%

probability of detection. All features are within the tolerance range for the size-to-

luminance relationship described in Section 4.3, and no boundaries are so extreme that

we cannot accurately reproduce luminance and detail on both sides. While we have

shown that this is not the case for all images, this does validate that there is nothing

intrinsic in the display hardware that prevents producing artifact-free images.

Distance-Dependent Sensitivity. An important property of the veiling glare is that it is

not related to the size or shape of the object causing the glare, only to the luminance

of that object. Walking away from, or towards, a bright object will not change the

angle subtended by the veiling glare. The size of the glare appears to change because

the angle subtended by the objects in view does change when moving closer or further

away. Moving closer causes the size of the veiling glare to decrease relative to the objects

in the scene, while moving further away causes the size of the veiling glare to increase

relative to the objects in the scene.

This property has important implications for the design of the optical package of

HDR displays. The distance between the viewer and the panel plays into the spacing

of the LEDs and the diffuser used. Viewing a display designed for close viewing from

much further away means that there are extraneous LEDs consuming power because, as

dictated by the relation of the PSF of the diffuser and PSF of the eye, they are packed

closer than necessary. Conversely, viewing a display designed for distant viewing from

up close means that the LED PSFs will be too wide with respect to the PSF of the eye

and the inaccuracies will be visible.

The design of the optical package of the DR-37P takes this into account and the
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Figure 5.5: Apartment.
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Figure 5.6: Moraine. (Image courtesy of Greg Ward.)
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display has an optimal viewing distance of roughly 3.5m, the distance between the

viewer and the television in an average living room setup. The comparison of visible

differences at two viewing distances shows the significance of this effect, and to further

illustrate this, we run the VDP at two different assumed distances for the same pair of

images. We compare the results at a distance of 3.5m, the average viewing distance at

home, to to 1.2m, which is about as close as you can approach and still view the entire

display. We repeat this for both Test Pattern in the Figure 5.7 and the Frequency Ramp in

Figure 5.8, and observe that there is significantly more error in the 1.2m distance since

the veiling glare is unable to obscure as many of the inaccuracies. Table 5.1 lists the

percent of pixels with probability of visible differences for both distances for all images.

>75% >95%

Test Pattern Near 4.48% 3.15%

Far 1.42% 0.71%

Frequency Ramp Near 4.07% 3.55%

Far 1.15% 0.79%

Apartment Near 0.29% 0.19%

Far 0.26% 0.16%

Moraine Near 0.00% 0.00%

Far 0.00% 0.00%

Table 5.1: Table of percent of total pixels at or above a detection level

5.3 Discussion

Finally, it is worth noting that the assigned probabilities are based on our ability to de-

tect differences in a direct comparison. Without the original image to compare against,

the user must rely on other less accurate mechanisms of determining whether a feature

indicates a difference. In simple cases, such as detecting a frequency grating or deter-

mining that the backlight is spilling across a boundary and is visible on a uniform patch

of color, there is enough information that the probability of detection does not change

significantly in the absence of the comparison image. In more complex cases, this is

not the case. For many applications, the user will not be comparing the display to any
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Figure 5.7: TestPattern distance comparison.

Figure 5.8: FrequencyRamp distance comparison.
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ground truth and we can expect that detection probabilities will decrease in many areas.

As long as the difference does not look out of place or explicitly wrong, the displayed

image will appear as valid as the original. In many cases, even if the user can ascertain

that there are differences between the actual and desired images, those differences do

not necessarily affect the perceived image quality.
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Chapter 6

Conclusions

This thesis addresses the accurate depiction of photometric images on dual-modulator

HDR displays. The steady increase in HDR imaging research has created a strong desire

to display the additional image data those techniques provide. Display hardware with the

potential to fulfill these needs is now available, but due to material limitations the images

produced are not pixel-perfect copies of the original image. A study of the psychophysics

involved in human perception shows that while the vision system is incredibly powerful,

observers have significant limitations in their ability to detect certain features in images.

Much as the motion depicted in video playback at 60 Hz is sufficiently indistin-

guishable from the original for human observers, the design of HDR display hardware

incorporates assumptions about the observer. The hardware is based on the claim that

the requirements for accurate depiction of local contrast are significantly less than strin-

gent than is required for the depiction of global contrast, and as long as the hardware

is capable of achieving those requirements, the images are indistinguishable. We have

shown that it is possible, and that it can be done efficiently and accurately.

The remainder of this chapter is organized into a summary of our contributions, fol-

lowed by a discussion of possible future directions of research, and some closing remarks.

6.1 Contributions

In Chapter 3, we presented the main contribution: the image processing algorithms for

the display hardware. We have researched the properties of the display hardware and

the areas of human psychophysics pertinent to that hardware, and incorporated those

observations into the design of our image processing methods employed in producing
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the input data required by the LCD/LED construction of the hardware device. Because

the real-time display of input is a fundamental requirement of any display device, we

have devised approximate solutions that operate within the enforced time constraints

while still achieving high quality results.

In Chapter 4, we described the differences between our idealized model of the dis-

play device and the physical hardware. Compared to the errors introduced by the ap-

proximate solutions using an accurate hardware model, we observe that similar magni-

tude inaccuracies in the hardware models used, even when employed by a full solution,

can result in disproportionately large errors in displayed images. The chapter covers the

measures required to correctly produce images given the nuances of the physical device.

In Chapter 5, we evaluated our work using the same perceptual principles that in-

spired the hardware design and our approach. This evaluation shows that to a human

observer the displayed images are nearly indistinguishable from the original, even though

some of the steps we have performed are approximations and the display hardware can-

not perfectly recreate most images.

Beyond its academic contributions, the work we presented also has significant com-

mercial relevance. The research has been actively incorporated into the production

pipeline at BrightSide Technologies, the company responsible for the development of

the HDR display hardware. The processing algorithms have been in commercial use

for 18 months, and the hardware controller inside the monitor runs the algorithm on a

FPGA as implemented by The Moving Pixel Company and based on our research. Addi-

tionally all real-time image processing for the LED display has been performed using the

contents of this thesis, and has been shown internationally at numerous conferences,

conventions, and trade shows.

6.2 Future Work

Our work here has only addressed a small portion of the overall problem of accurate

depiction on HDR displays, and there are numerous opportunities for extension and

improvement. Some of the possible areas include the topics mentioned in the intro-

duction including color, motion, and dependency on spatial frequency. Similar to how
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we addressed luminance, we can incorporate the pertinent perceptual background into

devising new methods.

As discussed in Chapter 3, we have not addressed the topics of remapping images

with pixel values outside the displayable space of the monitor. Hence, there is the op-

portunity to improve tone mapping techniques from very high dynamic range images to

HDR images that the monitor supports, and color space transformations given the extra

considerations required over larger contrast ranges. These topics and others are all aimed

at more accurate color appearance models, which are needed for the accurate display

of images. Fundamentally, all the same constraints found with LDR display systems still

apply to HDR displays, but have been loosened. Limits on peak intensity, feasible chro-

maticities, and other characteristics still exist. Research needs to be conducted in how

well current practices work on the problems and how they should, or can, be improved.

Issues remain concerning the improvement of the hardware design and image pro-

cessing algorithms, as well as addressing the challenges inherent to the combination

of LCD and variable backlight. The color saturation of an LCD panel changes when it

changes in intensity. Due to the achromatic light leaking through blacks, the darker the

color the less saturated that color is. The color space collapses as luminances approach

black, and the XZ components of the RGB channels desaturate and move towards the

white point. In LDR display calibration, because the poor sensitivity of the HVS to satu-

ration differences for lower luminances, this characteristic is approximated as a constant

to be subtracted from all channels. This is not the case with a variable backlight setup

of the HDR displays. Since the back illumination is not constant, it cannot be modeled

as a scalar value and subtracted out. The challenge is to design a method to remap the

gamut based on the backlight brightness and LCD driving level.

6.3 Closing Remarks

The crowning achievement of computer graphics and display science will be to pro-

duce images indistinguishable from reality. While there are many steps left on this path,

we feel that HDR displays represent a significant advancement. However, more is re-

quired than the ability to display contrasts beyond those that are reproducible by existing
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displays. Humans perceive the same contrast differently at different background lumi-

nances, and thus knowledge not only of the relative values of scene luminances, but also

of absolute intensities, is required.

Traditional imaging pipelines have lacked some or all of the additional data necessary

to accommodate this requirement. LDR pixel representations do not express the range

of values needed to store scene luminances, and device-referred image formats do not

include the necessary information to recover the initial values. Even HDR images, if un-

calibrated, only contain information about how much of a quantity is contained at each

pixel but fail to unambiguously specify what that quantity is. The repercussions of this

absence can be observed everywhere from the nuisance of calibrating a home theater

setup to the significant overhead costs associated with fields, such as film production

and medical imaging where preserving this information is critical. As the stages of the

imaging pipeline develop and means of including and processing the additional informa-

tion to recover photometric data appear, we feel that there will be a movement towards

making use of this information.

Approaching the image processing problem in terms of mapping photometric inputs

to photometrically calibrated luminances has provided us with many insights into solving

the problem we would not otherwise have gained. While not the only requirement in

realizing a calibrated, photometric imaging pipeline, the ability to accurately display data

is a key element. We feel that accurate depiction provides a piece of the foundation for

advanced imaging pipelines based on scene-referred images, and another step towards

the eventual realization of the ideal display.



91

Bibliography

[1] A. Adams. The Negative. Bulfinch, 1995.

[2] P. Alessi, M. Fairchild, K. Hashimoto, R. Hunt, et al. The CIE 1997 interim colour

appearance model – simple version, CIECAM97s. Technical report, International

Commission on Illumination, 1998.

[3] J.V.C. Antwerp. Automatic brightness control apparatus. United States Patent

4,514,727, April 1985.

[4] M. Ashikhmin. A tone mapping algorithm for high contrast images. In Proceedings

of Eurographics Workshop on Rendering 2002, pages 145–156, 2002.

[5] B. Barbier, S. Ediar, and J. Brun. System for the display of luminous data with

improved readability. United States Patent 5,057,744, October 1991.

[6] C. J. Bartelson and E. J. Breneman. Brightness perception in complex fields. Journal

of the Optical Society of America, 57(7):953–957, March 1967.

[7] P. Barten. Physical model for the contrast sensitivity of the human eye. In Proceed-

ings of the SPIE, volume 1666, pages 57–72, 1992.

[8] P. Barten. Spatio-temporal model for the contrast sensitivity of the human eye and

its temporal aspects. In Proceedings of the SPIE, volume 1913-01, 1993.

[9] P. Barten. Contrast Sensitivity of the Human Eye and its Effects on Image Quality.

Proceedings of the SPIE, 1999.

[10] P. Barten. Formula for the contrast sensitivity of the human eye. In Image Quality

and System Performance. Edited by Miyake, Yoichi; Rasmussen, D. Rene. Proceed-



Bibliography 92

ings of the SPIE, Volume 5294, pp. 231-238 (2003)., pages 231–238, December

2003.

[11] BrightSide Technologies Inc. DR-37P HDR display, 2005.

http://www.brightsidetech.com.

[12] K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman. Spatially

nonuniform scaling functions for high contrast images. In Proceedings of Graphics

Interface 1993, pages 245–253, 1993.

[13] CIE. CIE 19.2.1, An analytic model for describing the influence of lighting param-

eters upon visual performance, Volume 1. technical foundations. Technical report,

International Organisation for Standarization, 1981. Technical Committee 3.1.

[14] CIE. CIE 15.2004, Colorimetry. Technical report, International Organisation for

Standarization, 2004. Technical Committee 1.48.

[15] S. Daly. The visible differences predictor: an algorithm for the assessment of image

fidelity. Digital images and human vision, pages 179–206, 1993.

[16] P. Debevec and J. Malik. Recovering high dynamic range radiance maps from

photographs. In SIGGRAPH 1997: Proceedings of the 24th annual conference

on Computer graphics and interactive techniques, pages 369–378, New York, NY,

USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[17] R. Deeley, N. Drasdo, and W. Charman. A simple parametric model of the human

ocular modulation transfer function. Ophthalmology and Physiological Optics,

11:91–93, 1991.

[18] K. Devlin. A review of tone reproduction techniques. Technical Report CSTR-02-

005, Department of Computer Science, University of Bristol, November 2002.

[19] DICOM. Digital Imaging and Communications in Medicine (DI-

COM), chapter Part 14: Grayscale Standard Display Function.

http://www.medical.nema.org/dicom/2001.html, 2001.

http://www.brightsidetech.com/products/dr37p.php


Bibliography 93

[20] F. Drago, W. Martens, K. Myszkowski, and H. P. Seidel. Perceptual evaluation of

tone mapping operators with regard to similarity and preference. Research Report

MPI-I-2002-4-002, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,

66123 Saarbrücken, Germany, August 2002.

[21] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-

range images. ACM Transactions on Graphics, 21(3):257–266, 2002.

[22] M. Fairchild and G. Johnson. Meet iCAM: An image color appearance model. In

Proceedings of the IS & T/SID 10th Color Imaging Conference, Scottsdale, 2002.

[23] M. Fairchild and G. Johnson. The iCAM framework for image appearance, image

differences, and image quality. Journal of Electronic Imaging, 2004.

[24] M. Fairchild, G. Johnson, J. Kuang, and H. Yamaguchi. Image appearance modeling

and high-dynamic-range image rendering. In APGV 2004: Proceedings of the 1st

Symposium on Applied perception in graphics and visualization, pages 171–171,

New York, NY, USA, 2004. ACM Press.

[25] R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dynamic range

compression. ACM Transactions on Graphics, 21(3):249–256, 2002.

[26] J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg. A model of visual

adaptation for realistic image synthesis. In SIGGRAPH 1996: Proceedings of the

23rd annual conference on Computer graphics and interactive techniques, pages

249–258, New York, NY, USA, 1996. ACM Press.

[27] A. Ghosh, M. Trentacoste, and W. Heidrich. Volume rendering for high dynamic

range displays. In Proceedings of Volume Graphics 2005, pages 91–98, 2005.

[28] A. Ghosh, M. Trentacoste, H. Seetzen, and W. Heidrich. Real illumination from

virtual environments. In Proceedings of Eurographics Symposium on Rendering

2005, pages 243–252, 2005.

[29] D. Hood and M. Finkelstein. Handbook of Perception and Human Performance,

Volume 1, Sensory Processes and Perception, chapter Sensitivity to Light. Wiley,

1986.



Bibliography 94

[30] IMS Chips. HDRC VGAx, 2004. http://www.hdrc.com.

[31] ITU. ITU-R BT.709, basic parameter values for the HDTV standard for the stu-

dio and for international programme exchange. Standard Recommendation 709,

International Telecommunication Union, Geneva, 1990.

[32] G. M. Johnson. Cares and concerns of CIE TC8-08: spatial appearance modeling

and HDR rendering. In Image Quality and System Performance II, volume 5668,

pages 148–156. Proceedings of the SPIE, 2005.

[33] F. Kainz, R. Bogart, and D. Hess. The OpenEXR image file format. In SIGGRAPH

Technical Sketches. http://openexr.com, 2003.

[34] S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High dynamic range video.

ACM Transactions on Graphics (special issue SIGGRAPH 2003), 22(3):319–325,

2003.

[35] G. Krawczyk, M. Goesele, and H. P. Seidel. Photometric calibration of high dy-

namic range cameras. Research Report MPI-I-2005-4-005, Max-Planck-Institut

für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, April 2005.

[36] J. Kuang, H. Yamaguchi, G. Johnson, and M. Fairchild. Testing HDR image render-

ing algorithms. In Color Imaging Conference, pages 315–320, 2004.

[37] G. Ward Larson. LogLuv encoding for full-gamut, high dynamic range images.

Journal of Graphics Tools, 3(1):15–31, 1998.

[38] S. Lau, W. Walters, and T.s Wan. LED array calibration for linearity and unifor-

mity. Technical report, Structured Surface Physics Laboratory, University of British

Columbia, 2005.

[39] P. Ledda, A. Chalmers, and H. Seetzen. HDR displays: a validation against reality.

In IEEE International Conference on Systems, Man and Cybernetics 2004, October

2004.

http://www.hdrc.com/isensors.htm


Bibliography 95

[40] P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen. Evaluation of tone mapping

operators using a high dynamic range display. ACM Transactions on Graphics

(special issue SIGGRAPH 2005), 24(3):640–648, 2005.

[41] C. Lloyd and R. Beaton. Design of a spatio-chromatic human vision model for

evaluation full-color display systems. In Proceedings of the SPIE, volume 1249,

pages 23–37. SPIE, 1990.

[42] J. Lubin. A visual discrimination model for imaging system design and evaluation.

Visual Models for Target Detection, pages 245–283, 1995.

[43] Lumetrix. Iqcam imaging photometer.

[44] S. Mann and R. Picard. Being ’undigital’ with digital cameras: Extending dynamic

range by combining differently exposed pictures. Technical Report 323, M.I.T.

Media Lab Perceptual Computing Section, 1994. Also appears, IS&T’s 48th annual

conference, Cambridge, MA, May 1995.

[45] R. Mantiuk, S. Daly, K. Myszkowski, and H.P. Seidel. Predicting visible differences

in high dynamic range images - model and its calibration. In Bernice E. Rogowitz,

Thrasyvoulos N. Pappas, and Scott J. Daly, editors, Human Vision and Electronic

Imaging X, IS&T/SPIE’s 17th Annual Symposium on Electronic Imaging (2005),

volume 5666, pages 204–214, 2005.

[46] R. Mantiuk, G. Krawczyk, K. Myszkowski, and H.P. Seidel. Perception-motivated

high dynamic range video encoding. ACM Transactions on Graphics (special issue

SIGGRAPH 2004), 23(3):733–741, 2004.

[47] R. Mantiuk, K. Myszkowski, and H.P. Seidel. Visible difference predicator for high

dynamic range images. In Proceedings of IEEE International Conference on Sys-

tems, Man and Cybernetics, pages 2763–2769, 2004.

[48] D. Marimont and B. Wandell. Matching colour images: the effects of axial chro-

matic aberration. Journal of the Optical Society of America, 11(12):2113–3122,

1994.



Bibliography 96

[49] N. Miller, P. Ngai, and D. Miller. The application of computer graphics in lighting

design. Journal of the Illuminating Engineering Society, 14(1):6–26, 1984.

[50] T. Mitsunaga and S. Nayar. Radiometric self calibration. In Proceedings of IEEE

CVPR, pages 472–479, 1999.

[51] P. Moon and D. Spencer. Visual data applied to lighting design. Journal of the

Optical Society of America, 34(605), 1944.

[52] P. Moon and D. Spencer. The visual effect of non-uniform surrounds. Journal of

the Optical Society of America, 35(3):233–248, 1945.

[53] N. Moroney, M. Fairchild, R. Hunt, C. Li, M. Ronnier Luo, and T. Newman. The

CIECAM02 color appearance model. In Color Imaging Conference, pages 23–27,

2002.

[54] E. Muka and G. Reiker. Reconsidering bit depth for radiological images – is eight

enough? In Proceedings of the SPIE, volume 4686, pages 177–188, 2002.

[55] F.L. Van Nes and M.A Bouman. Spatial modulation transfer in the human eye.

Journal of the Optical Society of America, 57:401–406, 1967.

[56] R. Normann, B. Baxter, H. Ravindra, and P. Anderton. Photoreceptor contributions

to constast sensitivity: Applications in radiological diagnosis. In IEEE Transactions

on Systems, Man, and Cybernetics, volume SMC-13, pages 946–953, 1983.

[57] A. Oppenheim, R. Schafer, and T. Stockham. Nonlinear filtering of multiplied and

convolved signals. Proceedings of the IEEE, 56(8):1264–1291, 1968.

[58] S. H. Park and G. M. Montag. Evaluating tone mapping algorithms for rendering

non-pictorial (scientific) high-dynamic-range images. Submitted to ACM Transac-

tions on Applied Perception, 2005.

[59] S. Pattanaik, J. Ferwerda, M. Fairchild, and D. Greenberg. A multiscale model of

adaptation and spatial vision for realistic image display. In Proceedings of ACM

SIGGRAPH 1998, pages 287–298, 1998.



Bibliography 97

[60] C. Poynton. Digital Video and HDTV: Algorithms and Interfaces. Morgan Kauf-

mann, 2003.

[61] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone reproduction

for digital images. ACM Transactions on Graphics (special issue SIGGRAPH 2002),

21(3):267–276, 2002.

[62] E. Reinhard, G. Ward, P. Debevec, and S. Pattanaik. High Dynamic Range Imaging.

Morgan Kaufmann, 2005.

[63] M. Robertson, S. Borman, and R. Stevenson. Dynamic range improvements

through multiple exposures. In Proceedings of International Conference on Im-

age Processing (ICIP) 1999, pages 159–163, 1999.

[64] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste,

A. Ghosh, and A. Vorozcovs. High dynamic range display systems. ACM Transac-

tions on Graphics (special issue SIGGRAPH 2004), 23(3):760–768, 2004.

[65] H. Seetzen, L. Whitehead, and G. Ward. A high dynamic range display using low

and high resolution modulators. In Society for Information Display Internatiational

Symposium Digest of Technical Papers, pages 1450–1453, 2003.

[66] SMPTE. SMPTE RP 71, Setting chromaticity and luminance of white for color

television monitors using shadow mask picture tubes. Technical report, Society of

Motion Picture and Television Engineers, 1977.

[67] G. Spencer, P. Shirley, K. Zimmerman, and D. P. Greenberg. Physically-based glare

effects for digital images. In Proceedings of ACM SIGGRAPH 1995, pages 325–

334, 1995.

[68] SpheronVR AG. SpheroCamHDR, 2004. http://www.spheron.com/.

[69] J. Stevens and S. Stevens. Brightness function: Effects of adaptation. Journal of

the Optical Society of America, 53(3), 1963.

[70] M. Stokes, M. Anderson, and R. Motta. Standard default color space for the Inter-

net. Technical report, World Wide Web Consortium, 1996.



Bibliography 98

[71] Sunnybrook Technologies Inc. Zeetzen 5 HDR display, 2004.

http://brightsidetech.com.

[72] Thompson Grass Valley. Viper FilmStream, 2004.

http://www.thomsongrassvalley.com.

[73] J. Tumblin and H. Rushmeier. Tone reproduction for realistic images. IEEE Computer

Graphics and Applications, 13(6):42–48, 1993.

[74] V. Virsu, P. Lehtio, and J. Rovamo. Constrast sensitivity in normal and pathological

vision. In L. Maffei, editor, Doc. in Ophthalmology Proceeding Series, volume 30,

pages 363–272, 1981.

[75] J. Vos. Disability glare - a state of the art report. CIE Journal, 3(2):39–53, 1984.

[76] G. Ward. Graphics Gems IV, chapter A Contrast-Based Scale Factor for Luminance

Display, pages 415–421. Academic Press, 1994.

[77] G. Ward. A wide field, high dynamic range, stereographic viewer. In In Proceedings

of PICS 2002, April 2002.

[78] G. Ward and M. Simmons. Subband encoding of high dynamic range imagery. In

APGV 2004: Proceedings of the 1st Symposium on Applied perception in graphics

and visualization, pages 83–90, New York, NY, USA, 2004. ACM Press.

[79] A. Watson. The cortex transform: Rapid computation of simulated neural images.

Computer Vision, Graphics and Image Processing, 39:311–327, 1987.

[80] A. Yoshida, V. Blanz, K. Myszkowski, and H.P. Seidel. Perceptual evaluation of

tone mapping operators with real-world sceness. In B. Rogowitz, T. Pappas, and

S. Daly, editors, Human Vision and Electronic Imaging X, IS & T/SPIE’s 17th Annual

Symposium on Electronic Imaging (2005), volume 5666 of SPIE Proceedings Series,

pages 192–203, San Jose, USA, January 2005. SPIE.

http://brightsidetech.com
http://www.thomsongrassvalley.com/products/cameras/viper/

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Image Processing for HDR Displays
	Photometric Imaging
	Terminology

	Related Work
	Perception and Psychophysics
	Local Contrast Perception
	Luminance Quantization
	Visual Difference Prediction

	Tonemapping Operators
	Taxonomy of Operators
	Validation
	Shortcomings of Tonemapping

	HDR Technology
	Projector-based Display
	LED-based Display

	Display Calibration
	Gamma
	Implications for HDR displays


	Processing Algorithms
	Reference Algorithm
	Nonlinear System
	Observations

	Performance-Related Modifications
	Simplification of Simulation
	Problem Decomposition
	Approximate Solution

	Implementation
	Target Backlight
	Deriving LED Intensities
	Backlight Simulation
	Blur Correction

	Error Diffusion
	Rationale
	Backlight Update Process
	Corrective Image Filter


	Measurement and Calibration
	LED Array
	LCD Panel Response
	Diffuser Pointspread Function

	Evaluation
	Preliminaries
	Algorithm Evaluation
	Discussion

	Conclusions
	Contributions
	Future Work
	Closing Remarks

	Bibliography

