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Figure 1. Screen photographs of volume rendering of the CT head dataset on a HDR display, captured at 2 f-stops apart, illustrating the

representable dynamic range.

ABSTRACT

Dynamic range restrictions of conventional displays limit the
amount of detail that can be represented in volume rendering ap-
plications. However, high dynamic range displays with contrast
ratios larger than 50,000 : 1 have recently been developed. We
explore how these increased capabilities can be exploited for com-
mon volume rendering algorithms such as direct volume rendering
and maximum projection rendering. In particular, we discuss dis-
tribution of intensities across the range of the display contrast and a
mapping of the transfer function to a perceptually linear space over
the range of intensities that the display can produce. This allows
us to reserve several just noticeable difference steps of intensities
for spatial context apart from clearly depicting the main regions of
interest. We also propose generating automatic transfer functions
for order independent operators through histogram-equalization of
data in perceptually linear space.
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Perceptually Based Rendering, Volume Rendering, Transfer Func-
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PUTER GRAPHICS]: Picture/Image Generation—Display algo-
rithms; 1.4.0 [IMAGE PROCESSING AND COMPUTER VI-
SION]: General—Image displays; 1.4.10 [COMPUTER GRAPH-
ICS]: Image Representation—Volumetric.

1 INTRODUCTION

Direct volume rendering has proven extremely useful for the visual-
ization of medical and scientific data sets. One of its advantages is
that transfer functions can be used to segment out interesting parts
of the volume, while in principle keeping other information present
to provide context useful for navigation.

Unfortunately, the low dynamic range of conventional displays
limits the usefulness of this approach: for optimal contrast in the
regions of interest, one has to adjust the transfer function such that
most of the available intensity and opacity levels are used for very
specific density values. Consequently, very little precision remains
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for other density values to provide spatial context. The non-linear
gamma curve of such display devices helps, but the problem re-
mains as there are not enough addressable intensity values.

Recently developed display technology with a much higher dy-
namic range promises to be useful for solving this problem. Seetzen
et al. [17] describe two such systems, one with projector-based il-
lumination at a contrast ratio of 50, 000 : 1 and a peak intensity of
2, 7OOcd/m2, and one with LED illumination reaching a contrast
ratio of > 150, 000 : 1 and a peak intensity of 8, 500cd/m? Typi-
cal desktop displays have a contrast of about 400 : 1 with a maxi-
mum intensity of 300cd/m?, although special medical displays can
perform a factor of 2-3 times better.

In this paper, we investigate the use of this HDR technology for
volume rendering (Figure 1). In particular, we describe the use of
transfer functions in perceptually linear space over the range of
intensities representable by the display. We also describe adapta-
tions of transfer functions to better represent spatial context and
automatic generation of transfer functions based on JND space
histogram-equalization. Finally, we explore related techniques for
order independent volume rendering algorithms such as maximum
intensity projection and summation, both of which are useful for
x-ray style rendering.

The remainder of this paper is organized as follows: Section 2
briefly recounts previous work in volume rendering, HDR display
technology, and the aspects of human visual perception that are rel-
evant to our work. Section 3 discusses methods for deriving trans-
fer function that yield in a perceptually linear usage of the contrast
range, while Section 4 explores the possibilities for automatically
adapting user-defined transfer functions to provide spatial context
for navigation.

2 RELATED WORK

2.1 Direct Volume Rendering

A lot of recent work has focused on deriving transfer functions au-
tomatically from volume data. Much of this work analyzes the his-
togram of the volume densities, sometimes combined with gradi-
ents [6] or curvature [7]. Several different user interfaces have been
proposed, namely [10, 9, 8].

Very recently, Mora and Ebert have argued that traditional direct
volume rendering may not be the best way to visualize volume data



since important features may be occluded by less important parts of
the volume. They propose order independent volume rendering, a
framework that generalizes both maximum intensity projection and
summation based methods, which roughly correspond to x-ray style
rendering. They propose stereo as a way to compensate for the loss
of depth cues arising from order independent methods, and argue
that stereo is, in fact, more effective for order independent methods
than for direct volume rendering.

Independent of a specific volume rendering method, it is impor-
tant to evenly distribute information across the range of contrasts
that can be shown on a given display. A first step in this direction
was recently taken by Potts and Méller [15], who proposed to spec-
ify transfer functions for direct volume rendering on a logarithmic
scale. However, for modern display devices (especially the high
dynamic range displays that have recently evolved), it is also nec-
essary to take into account the limitations of human contrast per-
ception for various intensity levels. In this paper we analyze the
intensities generated on the screen by various rendering algorithms,
and propose to adapt transfer functions to take these perceptual ef-
fects into account. The goal is therefore to optimize the perceptible
contrast generated in the final image.

2.2 HDR Displays

Conventional desktop display systems such as CRTs or LCD pan-
els have dynamic ranges of about 400 : 1 and a maximum inten-
sity of about 300cd/m?>. In recent work, Seetzen et al. [17] de-
scribe two setups that combine conventional low dynamic range
display technology to form a high dynamic range display. In the
first setup, a video projector replaces the backlight of a conven-
tional LCD panel. This way, the light arriving from the projector is
filtered by the semi-transparent LCD panel. Seetzen et al. measured
a dynamic range of about 50, 000 : 1 with a maximum intensity of
2, 700cd/m? for this setup.

The same authors also developed a second system in which the
projector is replaced with a low-resolution LED array. This is pos-
sible since the local contrast that the human eye can perceive is
limited. This second setup achieves a top intensity of 8, 500cd/m?
with a contrast of over 150, 000 : 1.

Seetzen et al. describe the image processing operations neces-
sary to factorize floating point images (representing absolute lumi-
nances) to drive the front panel and the back lighting of the HDR
displays. These operations can be implemented on GPUs for inte-
gration into interactive rendering systems. In our work, we use the
same algorithms as a backend for our volume renderer.

2.3 Human Perception and HDR I maging

In recent experiments, Muka and Reiker [13] have determined that
over the dynamic range of conventional displays the perceptual dif-
ference between an 8-bit digital display and a 10-bit or higher bit
depth is minimal, and in some cases even non-existent. From this
result, we can conclude that HDR display technology such as the
one described in Section 2.2 is essential for displaying more visu-
ally distinct intensity levels.

Over the range of illumination levels representable by the HDR
displays mentioned above, the sensitivity of the human visual sys-
tem is highly non-linear: at low luminance levels, smaller differ-
ences are perceivable than at high luminance levels. This prop-
erty is formally described by the notion of just noticeable differ-
ences (JND). One JND is the smallest detectable intensity differ-
ence for a given illumination level. For the intensity range covered
by the HDR display technology mentioned above, Barten [1, 2] has
derived a psychophysically validated model to characterize JNDs.
Based on this work, an analytical function for computing JNDs was
included in the DICOM Grayscale Standard Display Function [3].

A plot of the JND curve over the relevant intensity range is
shown in Figure 2.
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Figure 2: The number of just noticeable difference (JND) steps for
different maximum intensities according to the DICOM standard.

For the projector-based HDR display of Seetzen et al. [17], this
model predicts 962 JND steps, while for the LED-based display
it predicts 1139 JND steps. Both display technologies can produce
intensities at a finer granularity, but the human visual system cannot
discriminate between those. To make optimal use of the contrast of
a display, the intensities produced by an algorithm therefore must
be linear in JND space, not the physical space. This is the focus of
our work.

3 TRANSFER FUNCTIONSFOR HDR DISPLAYS

In the following we describe how to perceptually optimize user
specified transfer functions for the different rendering algorithms.
We start by discussing the case of direct volume rendering, and then
move on to order independent methods (summation and maximum
intensity projection).

3.1 Direct VolumeRendering

To derive an approximately perceptually linear formulation of
the transfer function for direct volume rendering, consider the
emission absorption volume rendering equation in the notation of
Sabella [16]:

b U
I(a,b) = / Cp(u) - e~ Ja 7POdtgy, 1)

Here, p is the volume density at point u, C'is an emission con-
stant (i.e. C - p is the emitted energy per unit length), and 7 is the
absorption constant (i.e. 7 - p is the absorption per unit length).

If we assume that the density is constant over a segment of the
integral, we get

I(a,b) = % with a:=1— ¢ "Ja Pt )

as described by Max et al.[11]. In other words, the transparency
« of the integral varies exponentially with the volume density. For
this reason, Potts and Mdller [15] argue that the transfer function
that is used to derive densities from volume data values should be
specified on a logarithmic scale.

However, as described in Section 2.3, the intensities themselves
are not perceived linearly by the human observer. In order to make
optimal use of the intensity range delivered by the HDR displays,



the just noticeable differences have to be taken into account. In par-
ticular, let f;np be the IND function from the Dicom standard [3],
and f;li, p beits inverse (i.e. the function mapping intensity values
to just noticeable differences). The perceived intensity level in JIND
space is then:

Iyerceivea(a,b) = fiip(I(@,b) = f7io (Q) )

T

The densities p should therefore be specified as

p=log(finp(p')), @)

where p’, the original volume densities, are now mapped approx-
imately linearly to just noticeable intensity differences in the final

image (Figure 3).
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Figure 3: Perceptually linear transfer function specification for the
tooth dataset (Figure 6). Top: perceived intensity levels p specified
in JND space. Bottom: actual intensity p’ used in volume rendering.

Of course the volume densities are not constant along the ray in
practice. As a consequence, if a segment of the transfer function
is changed, but others remain the same, then the actual intensity
change on the screen can still be non-linear. However, we find that
the correspondence between transfer function and response of the
display is much more direct and easy to control if we use the map-
ping described above (see Section 5).

3.1.1 Color

The discussion so far has only considered just noticeable differ-
ences in intensity, and has ignored color. In practical volume ren-
dering applications, color is, however, an important means of vi-

sually segmenting volume data sets into different parts. Unfortu-
nately, knowledge about human perception in environments with
both color and high contrast is at this point limited: most of the per-
ception experiments dealing with color differences were performed
in low contrast settings, while the intensity JND work is based on
monochromatic experiments.

In the absence of more perceptual models that take both color
and high contrast into account, the best we can do at the moment is
to treat the two aspects as being independent. This can be achieved
by using a color space that separates intensity from chromaticity,
for example the L*a™b* space. The user can then specify two
transfer functions for the chrominance channels (a and b), while
the luminance is computed using the algorithm introduced for the
monochromatic case.

3.2 Order Independent Operators

A similar analysis can be performed for the order independent op-
erators. In the case of the summation operator, it is easy to see that
a change in the transfer function contributes linearly to a change in
pixel intensity. For maximum intensity projection, a change only
occurs if the value changed is actually the maximum along a given
viewing ray. If this is the case, however, then the effect is again
linear. In both cases, the transfer function should therefore only be
modified by the inverse of the JND curve.

In addition to this simple perceptual adjustments, order inde-
pendent methods are also amenable to more sophisticated methods
for automatically generating transfer functions. In practical volume
rendering applications, a linear ramp transfer function is often used
as a starting point for exploration. Mora and Ebert [12] showed
that this can be a reasonable choice for order independent meth-
ods, although it does not tend to work very well for direct volume
rendering.

Several researchers have focused on deriving transfer functions
automatically from volume data [14]. The primary focus has been
on analysis of the distribution of histogram values and sometimes
combined with other features in the volume such as gradients [6] [4]
or curvature [7].

We propose to perform histogram equalization on the JND-
corrected volume data to generate the intensity transfer function.
This equalization is done by first constructing the normalized cu-
mulative histogram. We then normalize the histogram of the data
values such that the intensity distribution is uniform in JND space.
This allows us to generate a perceptually linear transfer function
which maps most of the interesting data into the visible range (Fig-
ure 4). The generated transfer function can also be used as an in-
tuitive starting point to explore the data and segment it in a more
customized manner.

We find that this method works well for the summation oper-
ator. For the maximum operator, however, the histogram of the
volume densities is not always a good predictor for the histogram
of the pixel values, since the maximum operator is strongly view-
dependent. For this reason, we also consider performing the his-
togram equalization in image space after projection. This is easy to
implement for the maximum operator since it requires only one un-
normalized value to be stored per pixel. In Section 5 we show sev-
eral examples using the six order independent operators proposed
by Mora and Ebert [12]: summation and maximum applied to orig-
inal data values, to their gradient magnitude and to the product of
data value and gradient magnitude.

Unfortunately, the theoretical motivation behind JND space his-
togram equalization does not apply to volume rendering. This is
because the perceptually linear mapping of the data goes through
another non-linear mapping in the form of exponential fall-off due
to the volume rendering integral (Equation 1). In practice, however,
we find that the method can often still be used to provide a good
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Figure 4: Automatic transfer function generation based on JND space
histogram equalization for the CT engine dataset. Top: transfer func-
tion based on equalization of data density values. Bottom: transfer
function based on equalization of gradient magnitude (as used in Fig-
ures 8 and 9).

starting point for a transfer function. We provide several examples
of results for direct volume rendering in Section 5.

4 AUTOMATICALLY PROVIDING SPATIAL CONTEXT

Something we might want to do on a HDR display is to reserve a
small range of density values for parts of the volume that are not di-
rectly the focus of attention, but can provide context for navigation
within the volume. A perceptually linear space for specifying trans-
fer functions is useful in this regard, since it allows us to directly
estimate what contrast range will be used for this purpose.

For example, on the projector-based HDR display [17], we can
set aside a portion of the 962 displayable JND steps for providing
spatial context in this form. In our implementation, we use infor-
mation from the data itself, in the form of gradient magnitude, to
highlight context. Volume areas of high gradient magnitude corre-
spond to distinctive isosurfaces that can be rendered dimly to pro-
vide context for navigation. We found that setting aside about 400
JNDs for providing this context is a good tradeoff for the projector
based HDR Displays. We expect that the best choice will depend
on the contrast and intensity range of the individual display used.
For our display, this choice leaves more than 560 JNDs for depict-
ing the data values the user is currently interested in, which is still
more than twice the precision of conventional displays.

Given a user provided transfer function that segments out the
object of interest and sets the densities of all other regions to 0,
we can adapt this transfer function in the following way: all non-

zero entries in the old transfer function are linearly mapped to JND
steps reserved for focus (in our case 400 . ..962). The regions that
were zeroed out previously are replaced by piecewise linear seg-
ments mapping gradient magnitude values to the range 0...400
(Figure 5).
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Figure 5: Automatic context generation for the CT head dataset (Fig-
ure 7). Top: User specified opacity transfer function for data (yel-
low histogram). Bottom: Automatic context for unselected data in
the form of gradient magnitude (orange histogram) being mapped
to 0...400 JNDs, while the selected data is mapped to 400 .. .962
JNDs reserved for focus.

5 RESULTSAND DiIsScuUssiON

We use the perceptually linear mapping described in Section 3.1 to
specify the opacity transfer function for various medical and sci-
entific datasets. We present results on the projector based HDR
display as well as comparisons with tone mapped versions on a reg-
ular display device. Here, we used a log-linear tone-mapper with
gamma correction as implemented in HDRShop [5]. The CT tooth
dataset has many distinct isosurfaces very close together in intensity
space and a logarithmic transfer function (Figure 3) significantly
aids in isolating these isosurfaces (Figure 6, left). Note that the
HDR display clearly shows a lot more detail in the tooth than the
tone-mapped version on the regular display. The same non-linear
mapping was used to isolate the sinuses and a thin layer of skin
around the skull in the CT head dataset (Figure 6, right). Again
note the details in the eye sockets and the skull surface as shown
on the HDR display compared to the version shown on the regular
display device. The HDR sequences also convey a better sense of
relative depth for various features. In this case, the tooth and the
head datasets were both rendered with lighting and shading.



Figure 6: Screen photographs of volume rendering of the CT tooth and the CT head datasets. The left-right image pairs were captured at 4
f-stops apart. Top row: As displayed on the HDR display; Bottom row: tone-mapped version displayed on a regular LCD panel.
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Figure 7: Automatic context generation for both the CT tooth and the CT head datasets by adapting the transfer function and remapping the
intensities in JND space. The left-right image pairs were captured at 4 f-stops apart. Top row: User selected focus; Bottom row: Automatically
generated context.




Figure 8: JND space histogram equalization for generating automatic transfer functions for the sum operator. The left-right image pairs were
captured at 4 f-stops apart. Top: transfer function generation by histogram equalization; Bottom: JND space linear ramp transfer function.
Left-pairs: CT engine dataset and CT head using gradient magnitude; Right-pairs: CT engine dataset and CT tooth using product.

Reserving JNDs for context as described in Section 4 can be very
useful as a semi-automatic way of generating transfer functions.
We use the gradient magnitude of the data for visualizing context
since gradient magnitude defines object boundaries. We selected a
threshold of 0 . . . 400 JNDs with the projector-based display for vi-
sualizing context as this nicely separated out the various isosurfaces
for most of the datasets. This threshold can also be set in a data-
driven way, for example by examining the histogram of the gradient
magnitude. The context generated in this way for the CT tooth and
head datasets (Figure 7, left and 7, right) results in semi-automatic
isolation of interesting isosurfaces, such as the sinuses, ear and skin
in the CT head dataset and the roots in the tooth, similar to that
obtained from full user selection in Section 3.1. Also note how the
context is mostly saturated in the long exposure shots as it occupies
only a small portion of the intensity space in order to retain details
in the focus. The tooth and head datasets were rendered without
lighting and shading in this case to clearly illustrate the effect of

JND space context generation. Note that the JND space mapping
for focus and context was applied only to the opacity transfer func-
tion and color was manually assigned.

Our proposed JND space histogram equalization in Section 3.2
provides a way to automatically generate a perceptually linear
transfer function which maps most of the interesting data into the
visible range. It also serves as an improved starting point for further
exploration of the data. As pointed out previously, this is directly
applicable for automatically generating transfer functions for order
independent operators in volume rendering. The histogram equal-
ization is applied in data space for the summation operator and in
image space for the maximum operator. We apply it to the six or-
der independent models [12]: summation and maximum applied to
original data values, to the gradient magnitude and to the product of
the data value and gradient magnitude. We present comparisons of
renderings with automatically generated transfer functions through
histogram equalization in JND space with those using a linear ramp



Figure 9: JND space histogram equalization for generating automatic transfer functions for the max operator. The left-right image pairs were
captured at 4 f-stops apart. Top: transfer function generation by histogram equalization; Bottom: JND space linear ramp transfer function.
Top-left: CT engine dataset using gradient magnitude; Top-right: CT engine dataset using product; Bottom-left: CT visible human male dataset
using data density; Bottom-right: CT visible human male dataset using product.

in JND space for these operators.

With summation, the operator applied to gradient magnitude and
the product provides the most compelling visualizations as both
cases highlight the distinct isosurfaces in the data. Figure 8 presents
both results for the CT engine dataset, as well as gradient magni-
tude image for the CT head, and product for the CT tooth.

Figure 9 presents the results of applying the maximum opera-
tor to both gradient magnitude and the product for the CT engine
dataset, as well as to original data and the product for the CT Vis-
ible Human Male dataset. Note that here we compare results of
JND space histogram equalization in image space to a linear ramp
in JND space. In the case of both summation and maximum inten-
sity projection, the JND space equalization leads to a better visual-
ization of various features in the volume.

6 CONCLUSIONS

One of the main advantages of direct volume rendering for visu-
alization of medical and scientific datasets is the usage of transfer
functions in order to segment out interesting parts of the volume,
while in principle keeping other information present to provide con-
text useful for navigation.

Conventional displays with low dynamic range provide very lit-
tle precision for spatial context as most of the precision is used up
for visualizing specific segmented regions of the volume. In this
paper, the use of recently developed HDR display technology for
volume rendering is investigated. In particular, we examine the
creation of transfer functions in perceptually linear space over the
range of intensities representable by the display. This is done by
mapping intensity values to just noticeable differences and defining
transfer function in JND space. Also described is the adaptation



of transfer functions to better represent spatial context by reserving
JND levels for both focus as well as context. Automatic transfer
function generation in perceptually linear space is also presented
through histogram equalization in the JND space.

There are a number of opportunities for future work. In partic-
ular, the treatment of color is presently based on the assumption
of independence between just noticeable differences in luminance
and chrominance. The availability of the HDR display technology
would now allow the design of perceptual experiments to verify
this assumption, or to derive better models, which could, in turn, be
used to improve the methods presented here.

Our current analysis does not account for the changes of the in-
tensities by lighting and shading computations. If shading is to be
included into the contrast optimization, one would probably not
want to give the same priority to these shading-based differences
as to differences based on actual data values. A possible compro-
mise could be to limit the influence of the shading operations to a
small number of JNDs, similar to the way we currently create nav-
igational context.
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