
IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS
HARDWARE

MATTHEW M TRENTACOSTE

Abstract. We propose a simple method to implement floating-point vector
math operations and matrix multiplication on graphics hardware, focusing on
identification of details, in both software and hardware, which affect perfor-
mance and ease of use. Before widespread adoption of the graphics processing
unit (GPU) as another computation processor, we must address the need of
application interfaces (APIs) that abstract away the details of the implemen-
tation. We focus on providing an interface to the hardware that utilizes high
level interfaces that hide the specifics of implementing the functionality on the
GPU, while maintaining performance. We then use this interface to implement
non-negative matrix factorization, used for performing feature extraction, to
demonstrate the strengths of the library when run on current graphics hard-
ware.

1

2 MATTHEW M TRENTACOSTE

Contents

List of Tables 3
List of Figures 3
Acknowledgements 3
1. Introduction 4
2. Graphics Hardware 5
2.1. Stream Processing 6
2.2. Current Hardware 7
3. Mathematical Kernels 9
3.1. Per-Element Kernels 9
3.2. Matrix Multiplication 11
4. Non-Negative Matrix Factorization 13
5. Implementation 15
5.1. Interface 16
5.2. Representation 17
6. Performance 18
6.1. Methodology 18
6.2. Vector Math 18
6.3. Matrix Multiplication 21
6.4. Non-Negative Matrix Factorization 24
7. Discussion 25
7.1. Representation 26
7.2. CPU vs. GPU 27
7.3. Future Work 27
8. Conclusion 28
References 30

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 3

List of Tables

1 ATI 9700 Pro floating-point precisions 9
2 Intel VML functions 9
3 Pixel assembly instructions 10
4 Computational work vs. execution time 10
5 Vector math performance of CPU and GPU 19

List of Figures

1 High-level model of programmable graphics pipeline 5
2 Comparison of stream processor and CPU architectures 6
3 Computing an element of a matrix multiplication 11
4 Image Representation with NMF and PCA basis functions 14
5 Example usage of API 16
6 Example high-level per-element operation 17
7 Comparison of CPU and GPU performance 20
8 CPU and GPU matrix multiplication performance 22
9 Iterative NMF algorithm 24
10 Evolution of UV T approximation of images 25

Acknowledgements

I would like to acknowledge Doug James, Kayvon Fatahalian, and John Ketch-
paw for their assistance on this project, and ATI for hardware.

4 MATTHEW M TRENTACOSTE

1. Introduction

It has been widely accepted for some time that commodity graphics processing
units (GPUs) are capable of performing significant amounts of computation. Until
recently, little work has been done on using graphics hardware for purposes other
than generating imagery. This is largely because, for the majority of its existence,
graphics hardware has not been very programmable. Before the introduction of
shaders into the render pipeline, mapping algorithms to graphics hardware was
tedious, if not impossible, requiring complicated abstractions. When paired with
floating point datatypes to accurately represent the range of values that the shaders
can potentially generate, the GPU is capable of accurately implementing a wide
range of functions. This versatility, which extends beyond the scope of merely
rendering, provides much of the basis needed for a processor to be usable for general
computation.

Numerous algorithms have been implemented on graphics hardware as a result
of this change in the pipeline. Methods such as real-time computation of caustics
by Trendall and Steward [40], Perlin Noise by Hart[9], and more complicated op-
erations such as ray tracing by Purcell et al.[33] have been possible. There has
also been work in relation to solvers for specific problems such as interactive phys-
ical simulation by Harris[8], diffusion modelling by Diewald et al.[5] and Rumpf
& Strzodka[37], Voronoi computation by Hoff[10], level set solvers by Lefohn &
Whitaker[20], Lattice Boltzmann computations by Li et al.[21], and general-purpose
solvers by Bolz[2] and Kruger & Westermann[16].

All of these works are implemented through an existing graphics API, notably
OpenGL or Direct3D. While GPUs perform many general operations, both OpenGL
and Direct3D only expose graphics-related abstractions of the underlying general
functionality. An example of this is that all the methods use textures to store
data between the multiple passes required for a given operation as there is no
other way. As a result, most general computation solvers on graphics hardware,
with the exception of Kruger and Westermann[16], exist as singular closed objects
to perform a specific task. While the solver performs multiple steps, due to the
difficulty associated with working within the graphics-oriented abstraction of the
API, those individual steps are not exposed to the user. As the solvers are generally
operating only on data they had previously operated on, there are also compatibility
issues between most solvers due to the representations of data they assume. Often
data must be transferred back to the central processing unit (CPU) to convert to
new representation at substantial cost to performance.

Our current work attempts to create a matrix library to act as a sort of “glue”
between various other solvers, providing matrix and vector functions to perform
computations that would otherwise require the data to be moved back to the CPU.
Instead of complex routines, we expose an efficient set of simple operators which
can easily be combined to perform arbitrarily complex computations that would
otherwise require data to be moved back to the CPU.

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 5

In the remainder of this paper, we first determine a representation of data to
work as efficiently as possible within the architectural basis of graphics hardware,
paying special attention to how the fragment shader performs texture fetches. Sec-
ond, we implement two general functions based on that representation, a method
to perform an arbitrary operation to each element of a vector and a method for
performing matrix/vector products. Lastly, we implement non-negative matrix
factorization as a combination of these operators to demonstrate the utility of the
library.

2. Graphics Hardware

Fundamentally, modern graphics hardware is an implementation of depth-buffered
rendering and broken into two stages: geometry and rasterization. Currently, ge-
ometry is represented as collections of triangles defined by triples of vertices, the
vertices are transformed by some process, rasterized into fragments, and then out-
putted by another process operating per fragment. The outputs of the fragment
program are often compared to the values currently residing in the final buffer (usu-
ally based on depth into the scene) and are then blended with the current value
based on some test. Figure 1 contains a diagram of the current graphics pipeline.
The dotted line of blending stage indicates that it does not always apply as will be
described later.

Vertex Operations Fragment Operations

Application
Vertex

Program
Rasterization

Fragment
Program

Post-Fragment
Blending

Figure 1. High-level model of programmable graphics pipeline

The GPU is separate from the CPU and operates asynchronously, resulting in
the majority of calls to a graphics API to return immediately as the CPU is no
longer involved in the computational load dispatched to the GPU. This creates a
relationship between processors much like that of threads where semaphores are
necessary to ensure that each has the correct available data on which to perform
computations. Even under very heavy rendering workloads, the CPU is free to
perform other operations. There is an overhead cost in dispatching data to the
GPU, so CPU free cycles increase rapidly as the amount of GPU work per load
increases.

The concept of shaders moves the vertex and fragment operations away from
a state machine representation to a more programmable model1, allowing the exe-
cution of user-defined code that is more versatile than setting state on some pre-
defined implementation. This integration of programmable operations into the
graphics pipeline provides a greater scope of possible outputs from the vertex and

1Programmable shaders : These shaders are small programs comprised of assembly code
that operate on their respective elements though a simpler processor. They perform the exact
same function as their fixed-function counterparts, but have the option to do more.

6 MATTHEW M TRENTACOSTE

fragment stages than previously allowed. The classic example of this is the explo-
sion in various lighting models that have appeared in hardware rendering methods
in recent years as compared to previous implementations that relied on the fact
that the graphics card computed the standard Ambient/Diffuse/Specular lighting
per vertex.

While shaders allow more varied methods of processing vertices and fragments,
they only expand the functionality available at various stages, not alter the entire
pipeline. Triples of vertices are transformed per-vertex, then taken as a triple
and rasterized, and the results of that operation are computed per-fragment. The
individual elements at each stage are evaluated separate from other elements. This
restriction is significant not only in how it affects the scope of possible operations of
the GPU, but how the GPU obtains considerable performance improvements over
a CPU of comparable complexity.

2.1. Stream Processing. More formally, the system architecture paradigm of
forcing elements of a collection to be operated on individually, on which the GPU
is based is known as stream processing. The motivation for such a design is to try
to alleviate the ever-increasing disparity between the computation speed of a pro-
cessor and the transfer speed of the caches it utilizes to store data. Figure 2 shows
a comparison of the flow models of a streaming processor and a regular CPU. The
stream processing model has two main components, a stream of data elements and
a kernel that operates on the elements of that stream.

IN

OUT

READ

WRITE

Stream

Processor

Standard

CPU
System

Memory

Figure 2. Comparison of stream processor and CPU architectures
The fundamental difference is that even though the IN and OUT for the
stream processor are part of main memory, all it can see is the current
element. A kernel is loaded on the stream processor and processes all
elements going through the processor until a new kernel is set. A stan-
dard CPU has free access to memory, reading and writing instructions
and data as needed.

A stream of elements is a simple collection of (potentially) complex elements,
and can most easily be viewed as an array of structs. This differs from existing
vector processors in that the elements can consist of multiple datatypes. If a vector
processor was performing i operations, such as A ∗B + C, on three floats A,B, C,
there would be a vector of length i for A, a vector of length i for B, and a vector of

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 7

length i for C. If a stream processor was performing the same operation, it would
have one stream of length i in which each element would contain A,B, and C.

The kernel that operates upon those elements is some program that takes an
element of some kind as input and produces an element of some kind as output.
The kernel enforces the key paradigm of stream computing where no element can
perform operations dependant on other elements. In other words, stream processing
kernels explicitly do not have the ability to gather input elements or scatter output
elements. This forces an inherent parallelism into the model of the stream processor
which is the basis for the performance gains that graphics hardware has over the
CPU.

This parallelism is the basis of all graphics hardware companies touting their
performance increases “Moore’s Law cubed”, stating that their hardware doubles
in performance every six months as opposed to every 18 months as claimed by
CPU manufacturers. Requiring that every kernel operate without gather of input
elements or scatter of output elements, allows all available silicon to be filled with
parallel pipelines. Given an abstraction that guarantees the availability of multi-
ple parallel pipelines of computation, and that every element is capable of being
computed separately, it becomes apparent that if an element is in the cache, it can
be operated upon without any restrictions by definition of the stream processing
abstraction. The main advantage of using a stream processing architecture is the
inherent ability to hide the memory latency resulting from the cache hierarchy. Any
elements residing in the line that is loaded into the cache along with a requested
element are capable of being operated on, yielding that maximum possible ratio of
cache hits to cache misses.

2.2. Current Hardware. Current graphics hardware adheres to the stream pro-
cessing model with some added specializations for rendering images. The most
important deviation from the simple streaming model described is the inclusion of
a gather operator in the fragment program portion of the pipeline. Opposed to
other shading systems such as Renderman who provide more functionality for pro-
cedural generation of surfaces, the majority of detail in current realtime graphics is
obtained through the use of texture lookups. The fragment programs still map one
input fragment to one output fragment, but have the ability to look up elements
from other specific streams (textures).

Textures are basically arrays with the added ability to look up non-integer ele-
ments via blending the surrounding entries. They are used to store a variety of data
including standard diffuse maps, lookup tables2 for functions and intermediate re-
sults of computation. The pervasive use of texturing in modern graphics hardware

2 Texture lookup tables : There are many examples of encoding functions in textures, but
the most common in the normalization cubemap. For those unfamiliar with the cubemap, it is a
unit cube with a different texture for each face. Given XYZ texture coordinates, it looks up the
values from the respective side of the cube. The normalization cubemap, instead of containing
color information, it contains values such that if the texture coordinates represent the end point of
a vector touching the cube at that point, the RGB values fetched are the XYZ values of that vector
normalized. This was the only method of normalizing a vector as needed in per-pixel lighting in
pre-DirectX 9 hardware.

8 MATTHEW M TRENTACOSTE

has placed pressure on graphics hardware manufacturers to provide as much perfor-
mance in fetching textures as possible. These optimizations manifest themselves in
the filtering and storage methods of textures. Filtering involves sampling multiple
texture elements (texels) of the texture and blending between them based on the
values of the texture coordinate compared to the coordinates of those textures, and
is beyond the scope of this paper. The other method deals with the ordering of
texels in memory or the swizzle of the texture. Textures must have good locality of
values3 in regards to both the horizontal and vertical dimensions. Swizzled textures
reorder squares of texels into rows in memory, so when a given texel is accessed, the
three texels beside and below it are loaded into the texture cache instead of just
the texel immediately beside it. This greatly increases the percentage of texture
fetches that are already in cache for normal access patterns when compared to an
unswizzled texture.

We targeted our implementation at the ATI 9700 Pro GPU, and will discuss
some of the specifics of the card as they pertain to this body of work. In terms of
parallelism, the GPU contains 4 pipelines for vertex transformation and 8 fragment
pipelines for fragment processing. For the fragment pipelines, the 9700 Pro yields
a theoretical performance of

4floats/pixel ∗ 8pixels/clock ∗ 350Mhz = 11.2GFlops(1)

For reasons discussed later, the actual performance is significantly lower. The
fragment pipelines also are fully-programmable, presenting more available opera-
tions, compared to the register combiners of previous GPUs which were more akin
to the fixed-function pipeline. Both pipelines are specifically designed to be paral-
lelized and simple to optimize. All assembly instructions execute in one clock cycle
(some texture lookups are an exception), ensuring that there are no wasted cycles
in preserving the pipelines operating in lockstep. Furthermore, with the exception
of the most complicated instructions (exp, log, sqrt, and rsqrt), operations in
vertex and fragment programs occur simultaneously on all elements of vector-4s of
data.

The 9700 Pro has the ability to render to offscreen buffers in GPU memory and
use those buffers as textures to perform lookups into; necessary for storing compu-
tations between steps. The most significant of the changes between the 9700 Pro
and previous GPUs is that the 9700 Pro supports 24-bit floating point throughout
the pipeline where previously lower-precision floating point was implemented in the
vertex pipeline and fixed point was implemented in the fragment pipeline.

While floating point is a large improvement in terms of robustness of the com-
putations performed in the vertex and fragment programs, for these high-precision
computations to be of use, there needs to be high precision datatypes to store them
intermittently. The 9700 Pro has support for floating point textures, but it comes

3Texture swizzle : For the normal case of texture coordinates being interpolated over a
triangle, if pixel(i, j) maps to texel(i, j), then pixel(i+1, j) maps to texel(i+1, j) and pixel(i, j+1)
maps to texel(i, j + 1).

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 9

Format Mantissa Exponent Notes

16 bit 10 bits 5 bits Texture format
24 bit 16 bits 7 bits Pipeline precision
32 bit 23 bits 8 bits Texture format

Table 1. ATI 9700 Pro floating-point precisions

at a cost. The increased complexity of circuitry needed to perform arithmetic and
conversion on floating point data prevents certain operations from occurring in
current hardware, most notably in the features available for texture filtering and
post-fragment blending (as indicated by the dotted box in Figure 1). Table 1 shows
the floating point formats available and where they are used. For our library we
were only interested in 32-bit floating point data as we seek to offer precision of
computation as close to the CPU as possible. Texture filtering is not supported for
floating point textures, but was not relevant because we used textures as look-up
tables and did not want any modification of values based on offsets in the texture
coordinates. On the other hand, the lack of post-fragment blending plays a very
large role in the observed performance of our library.

3. Mathematical Kernels

Mapping traditional computational operations to graphics hardware is not al-
ways a straightforward process. Even if the mapping of a given operation is fairly
simple, the restrictions imposed through the graphics API and the hardware of the
GPU present an entirely different set of performance pitfalls that must be consid-
ered. The two main functions of our library are to perform user-defined vector math
kernels on a per-element basis and to multiply two matrices together. We discuss
both the instructions pertaining to the operations and the methods of storing and
manipulating data implemented in the library.

Inv Div Sqrt InvSqrt
Cbrt InvCbrt Pow Exp
Ln Log10 Cos Sin
Sincos Tan Acos Asin
Atan Atan2 Cosh Sinh
Tanh Acosh Asinh Atanh

Table 2. Intel VML functions

3.1. Per-Element Kernels. There is nothing revolutionary about the concept of
per-element kernels in itself. It is done every time a value in an array is read or
written. When performance becomes a consideration, the concept becomes more
formal. Most math libraries have a set of highly optimized (usually transcendental)
functions for operating on vectors of data. Intel Vector Math Library[14] (VML) is
one such set of routines. The library aims for not only efficiency in mathematical
computation, but also memory access. Each element is stated to be separate from

10 MATTHEW M TRENTACOSTE

every other element in its vector and only related to the respective element in
another vector. The functions of the library know that any other elements that are
loaded into the cache, along with a given element, are available to be used. Just like
in the stream processing model, the library prevents excess cache misses, increasing
the efficiency of memory access, and effectively hiding the memory hierarchy from
the application calling the library with respect to those operations. Table 2 contains
a listing of the functions provided by the library.

Instruction Description Cycles

exp Full precision exponent (2x) 1
log Full precision log2 x 1
pow Full precision xy 3*
rcp Reciprocal 1
rsq Reciprocal square root 1
sincos Sin and cosine 8*

* Performed through macros of instructions

Table 3. Pixel assembly instructions

There are aspects specific to the architecture of the GPU that must be taken into
consideration when deciding on methods of representation. The internal workings of
the 9700 Pro become more complicated when exp, log, sqrt, and rsqrt operations
from are being utilized in the shader or if floating point textures are loaded. The
previous statement that instructions in the fragment pipeline operate on vector-
4s in parallel isn’t completely true. The pipelines for the 9700 Pro consist of two
separate arithmetic logic units (ALUs); one operating on 3-tuples and one operating
on scalars. Instructions from Table 3 are only implemented in the scalar ALU of
the pipeline. Texture fetches are the only fragment program assembly instructions
that don’t always take one clock cycle to complete. Texture fetches on the 9700 Pro
take 1 clock per 32 bits of data for the texture format. A 1-channel 32-bit floating
point texture takes 1 clock to load while a 4-channel 32-bit floating point texture
takes 4 clocks to load. This number varies even more depending on whether the
data is in the texture cache, or has to be requested from GPU memory.

Tex. Fetch Clocks Arithmetic Inst Total Operations Ops/Inst

1 1 1 1/2
1 10 10 10/11
4 1 4 4/5
4 10 40 40/14

Table 4. Computational work vs. execution time

These two aspects dictate some foresight into the nature of the library’s usage
patterns of the library when deciding which method of storing to employ on the
GPU. Depending on the nature of operations being performed on the data, choosing
to pack 4 consecutive elements of a vector into the 4-channels of a texture might
increase or decrease performance. Consider the work accomplished by performing
one arithmetic operation verses 10 arithmetic operations one a 1 and 4 channel

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 11

texture shown in Table 4. We see that packing is only advantageous for long
kernels using simple operations and relatively few texture lookups. The overhead
for texture fetches increases rapidly in the 4-channel case when two or three textures
must be fetched to compute the output as in complex per-element kernels and
matrix multiplications. Also, since complex instructions can only be executed in
the scalar ALU, there is no concurrent execution advantage. The data must be
repacked depending on whether the matrix is the first or second operand in the
multiplication.

3.2. Matrix Multiplication. In our library, matrix multiplication is performed
in a similar method to the one described by Larsen and McAllister in [17]. Their
implementation was designed to operate on 8-bit fixed point datatypes present on
the GeForce 3 using the fixed-function pipeline. In order to extend their basic
method to work on the floating-point datatypes available on the ATI 9700 Pro,
we must decompose their method into the operations performed and adjust them
accordingly to the changes in the hardware.

Matrix 2
(Transposed)

Matrix 1

Matrix 3

Figure 3. Computing an element of a matrix multiplication

Both implementations are based one of the simplest methods of computing a
matrix multiplication on a system of distributed processors. The matrix multipli-
cation is visualized as a cube of processors with the three dimensions of the cube
identical to the three directions of the matrices being multiplied. The first matrix is
lying on the top face of the cube and its values are replicated throughout all of the
respective processors. The result is that each horizontal slice of the cube is a copy
of the first matrix. Likewise, the second matrix is transposed and distributed across
one of the side faces of the cube, so that each vertical slice of the cube is a copy
of the second matrix. Now each processor in the cube has a value from both the
first matrix and the second matrix. If those values appearing in the same position
when viewed from the front of the matrix are multiplied and summed together, the
multiplication occurs.

12 MATTHEW M TRENTACOSTE

The slices are represented by fullscreen axis-aligned quads with appropriately
chosen texture coordinates. When this arrangement is viewed with an orthogonal
projection (to ensure alignment of respective elements) and rendered to a buffer
with the same dimensions as the output matrix, the GPU can implement the same
functionality as the matrix multiplication. All of the quads can be issued in a single
render and the GPU just works to complete the computation until it has processed
all the quads.

While Larsen and McAllister implemented their work on the fixed-function
pipeline and did not explicitly state so, they employed two separate kernels through
available functionality to compute the multiplication of two matrices. The element-
multiplication kernel performed a texture fetch with the proper coordinates into
each of the input matrices and multiplied them together using the modulate tex-
ture operation. The accumulation kernel summed the results of all the individual
element-multiplication kernels using post-fragment blending. Equation 2 is the clos-
est arithmetic description of the method they implement for C = AB for matrices
A, B and C.

Cm,p =
n∑

i=1

Am,iBi,p(2)

This method is not directly applicable to floating point textures in latest gen-
eration graphics hardware because it utilizes post-fragment blending to implement
the accumulation kernel, which is not currently available for floating point render
targets. Accumulation is still possible, but must be done iteratively. The method
that is implemented is similar to the method shown in Equation 3 and subsequent
steps. The matrix X is of the same dimensions as C and contains the summa-
tion up to that step. The element-multiplication and accumulation kernels used
previously must be merged into a single multiply-add kernel that performs the
multiplication of two elements and adds it to a value that has accumulated all of
the element-multiplications up to that point. Each element-multiplication oper-
ation is manually accumulated into a temporary buffer, which is then read as a
texture to provide the prior work.

Cm,p = (Am,1B1,p) + (Am,2B2,p) + · · ·+ (Am,nBn,p)(3)

Xm,p = 0
Cm,p = Xm,p + (Am,1B1,p) + (Am,2B2,p) + · · ·+ (Am,nBn,p)
Cm,p = Xm,p + (Am,2B2,p) + (Am,3B3,p) + · · ·+ (Am,nBn,p)

...
Cm,p = Xm,p + (Am,nBn,p)

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 13

This small conceptual change requires moderate alteration of the process of
rendering a multiplication in terms of the API usage and impacts performance
greatly. First, regardless of any API or storage issues, the fact that floating point
textures require 4 times as much space and take 4 times as long to load compared
to fixed-point textures is a significant performance hit. Additionally, there are
two aspects of the setup that cause performance deterioration: the texture storage
representation the API uses when a buffer is being both written and read, and the
additional work required by the CPU to guide the rendering process.

Neither the GPU’s drivers nor the graphics API expose any means of specifying
the storage method of the texture. This is problematic because of the choices the
driver makes in regards to fragment buffers acting as both renderable targets and
textures. While the swizzling of textures on the GPU speeds up read access times, it
slows down write access times. When a texture is flagged as a renderable target, the
drivers decide to unswizzle the texture to speed up writes, and slowing down reads
as the bi-directional locality is lost and more cache thrashing occurs. This would not
be a concern if there was some way that the user could specify the order in which the
fragments being generated by a triangle being rasterized, but that is not the case.
For many usage patterns, this is an acceptable decision to be made for the user.
For our work, where all textures being fetched are unswizzled and that there are
many more reads than writes, this configuration is the most pathological condition.
The already slow fetches of floating-point textures are further slowed down by the
resultant texture cache thrashing due to the unswizzling of the textures.

Because API calls don’t always match one-to-one with the instruction set of
the hardware, every state change incurs a significant overhead due to the drivers
having to translate API instructions to driver instructions. Whereas Larsen and
McAllister set up all state ahead of time, we are forced to make changes in be-
tween the rendering of each slice to perform the accumulation operation through
the API. In addition, there is a delay of retransmitting data over the AGP bus,
further adding to the overhead of a state change. In order to preform the manual
accumulation, two temporary buffers are required. At each step, one buffer serves
as the accumulation of previous work, and the other buffer receives the new stage of
element-multiplication plus the accumulation of previous work. Then, the purposes
of the buffers are switched for the next stage, and the operation is repeated. This
requires us to render a given slice and manually change the state regarding the
utilization of the temporary buffers before rendering the next slice.

4. Non-Negative Matrix Factorization

Non-negative matrix factorization[19] (NMF) is an iterative machine learning
method of identifying parts of a set of data, such as a collection of images to be
used for facial recognition. Similar to Principle Component Analysis (PCA), it
seeks to create a set of basis functions to describe a set of data. These constraints
are modelled after the property that the firing rate of neurons is never negative, and
thus unable to change sign. This leads to a parts-based method of identifying local
structures in the set of data compared to more traditional approaches like PCA,

14 MATTHEW M TRENTACOSTE

Figure 4. Image Representation with NMF and PCA basis functions
Both PCA and NMF use the linear combination of their basis
functions to approximate the topmost image. Positive values are
illustrated by black pixels and negative values are illustrated by red
pixels. Image courtesy of Daniel D. Lee and H. Sebastian Seung,
Nature

whose basis functions operate on a more global level and generate representations
best described as “eigenfaces”, or distorted versions of whole faces.

To understand better how this method works and how its representation is dif-
ferent from the holistic representation of PCA. The database of images is regarded
as an m× n matrix F , each row contains n non-negative pixel entries of one of the
m face images. Both representations construct the approximation of the form

F̃ ≈ UV T(4)

that is best fit of F in the least squares sense, where U is an m× k matrix and
V is an n × k matrix. The rank k is chosen such that UV T is a compressed form
of the data in F .

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 15

The difference in results is determined by the constraints placed on the matrix
factors U and V . PCA constrains the columns of U to be orthonormal and the
columns of V to be orthonormal to each other. While this method is statistically
interpreted as the directions of the largest variance, the results rarely have an
obvious visual interpretation. Because PCA allows the entries of U and V to have
arbitrary sign, linear combinations generally involve complex cancellations between
positive and negative sections of elements, the individual eigenfaces generated often
lack intuitive meaning. NMF does not allow arbitrary sign. As only positive entries
are allowed, there is no subtraction performed in the linear combination of elements
as in PCA. Each basis may only add something separate to the final image, as no
other basis can subtract from what it adds. This is a much closer match to the
intuitive notion of combining parts to assemble the whole, and how NMF learns a
parts-based representation.

Uia ← Uia

∑
µ

Fiµ

(UV T)iµ
Vµa(5)

Uia ← Uia∑
j Uja

(6)

Vaµ ← Vaµ

∑

i

FT
iµ

(V UT)iµ
Uia(7)

There are various sets of update rules that preserve the non-negativity constraint
of NMF, minimizing various error metrics. The theory behind choosing one set over
another is beyond the scope of this paper, and a full discussion by Lee and Seung
can be found in [18]. We choose to implement the conventional metric of reducing
least squares error. Equations 5, 6, and 7 describe the iterative process. The three
steps are repeatedly applied until UV T converges to F .

5. Implementation

Our implementation is built around the DirectX 9 API, and targets the ATI
9700 Pro, but is compatible with any current or future piece of hardware that sup-
ports floating-point texture formats. The primary goal of the library is to provide
the user with an intuitive task-oriented interface that obscures the details of the
hardware implementation without sacrificing performance. The main performance
issue dependant on API usage as opposed to the underlying hardware is the flow
of data to and from the GPU. A standard BLAS interface returns a pointer to the
result in system memory. This operation should be avoided whenever possible as
GPU readback is currently very slow. Only when the user wants to directly access
elements, should the data be read back to system memory. To accomplish this,
we model the interface after a standard matrix algebra library, and add specialized
element accessors.

16 MATTHEW M TRENTACOSTE

5.1. Interface. Our interface consists of two objects that wrap collections of Di-
rectX API objects related to data storage and manipulation, the linAlgShader
and lasMatrix objects. They perform the high-level functionality of operator and
storage respectively. These operations could be stream-lined further to closer match
existing matrix algebra APIs without costing the user any control options, but of-
fer a better interface for observation of the operation of the GPU. Between them,
per-element operations and matrix multiplication are supported with the option to
transpose all input matrices. Figure 5 contains a short code sample on how to use
the API to square a matrix.

linAlgShader las; // Create controller

PLASMATRIX p; // Create matrices

PLASMATRIX q;

las.NewMatrix (&p); // Allocate matrices

las.NewMatrix (&q);

p->CreateMatrix (S, S); // Set size

q->CreateMatrix (S, S);

for (k = 0; k < S; k++) // Set data for p

for (j = 0; j < S; j++)

p->_w(k,j) = f[(k*S)+j];

las.Multiply (&q, &p, &p); // q = p * p

cout << q->_r(0,0); // read and print a value

Figure 5. Example usage of API

linAlgShader is a controller object, responsible for creating and maintaining
the overall state of the objects required to render through the graphics API. It
creates a rendering context, queries the capabilities of the hardware to decide the
best method of rendering and representation, and manages all of the objects such
as shaders and vertex data for slices to perform operations. It also maintains a
list of all the matrices currently instantiated, as it must be responsible for GPU
memory management, evicting unused matrices to system memory to make room for
matrices required by the current operation. We design our API with a specialization
in iterative algorithms, as the GPU is best at continually processing the same data
without CPU intervention. linAlgShader caches the intermediate accumulation
matrices required for rendering a multiplication to save the overhead cost of creating
and deleting these resources every multiply. They exist for the duration of the
controller’s instantiation, unless room is needed on the GPU, as they are the first
objects to be evicted.

lasMatrix is a collection of Direct3D objects responsible for representing a
matrix stored in textures. It contains the GPU buffer containing the matrix data
as well as objects to bind the buffer to be read as a texture and written as a render
target. It also contains a system copy of the matrix, and tracks updates to both the
CPU and GPU copies, synchronizing between them as needed, and ensuring that

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 17

data is not transferred across the AGP bus unless necessary. To aid this process, the
object exposes separate read and write accessors to the data, so the synchronization
flag is not set unnecessarily.

The native high-level shading language of DirectX 9 is utilized for allowing
user definition of per-element functions. Currently, functions are written directly
into a file that allows the API to bind high-level variables to the matrices being
represented. The DirectX 9 high-level shading language contains much of the same
functionality as the Intel VML as well as many simpler arithmetic functions. In a
high-level shader function, the elements are loaded through explicit texture fetches,
then combined in some set of operations, and return a value. The name of the
function is specified when the CPU function to perform the operation is called.
Figure 6 contains the high-level code to compute D = (A ∗ cos(B))/

√
C. The

function takes a struct that contains texture coordinates for fetching the respective
elements of the vectors. The three elements are explicitly loaded into variables and
then the result of operations on them is returned. This method is very crude and
separates the GPU code from that of the native CPU code, somewhat breaking the
abstraction built into our library, but has the advantage that per-element operations
can be changed without requiring the program to be recompiled.

float4 PS (PS_INPUT In) : COLOR

{

// read texture

float A = tex2D (Matrix1, In.Tex1).r;

float B = tex2D (Matrix2, In.Tex2).r;

float C = tex2D (Matrix3, In.Tex3).r;

// pass value through

return ((A*cos(B)/sqrt(C)).rrrr;

}

Figure 6. Example high-level per-element operation

The semantics of this language are geared towards general graphics operations
and expose functionality that could confuse the user if they are not already famil-
iar with the shading language. The .r and ṙrrr describing the replication of values
across the 4 channels of the native datatypes are used to specify the number of
elements to provide the compiler with a better understanding of the desired op-
eration. .rrrr is required as the compiler expects a 4-channel output even if the
buffer being written to has less channels. The COLOR tag specifies that the output
will be written to a buffer.

5.2. Representation. Currently, we represent matrices as one single texture. This
restricts the dimensions of the matrix to those of the maximum texture size for the
GPU (2048x2048 texels for 9700 Pro). While blocking schemes that store a ma-
trix in a collection of textures chosen to provide better cache usage yield better
results, the asynchronous relation of the GPU and CPU make such methods less
desirable for benchmarking operations and identifying bottlenecks of the hardware.

18 MATTHEW M TRENTACOSTE

For our implementation, we use only 1-channel textures to store vectors and ma-
trices in our library based on the logic that per-element kernels often require the
use of instructions only available in the scalar ALU and matrix multiply kernels are
short. We believe this to be the most versatile of packing representations across
the entire range of operations available, based on cache usage performance and
instruction utilization. Since matrices can be either the first or second matrix in
the multiplication, if row or column packing is used, they have to potentially be
repacked depending on which order. Methods to manually encode the swizzle of
the matrix in the channels of the texture also costs more overall than rendering
with one-channels. We find that the overhead to potentially perform this operation
even half the time is sufficient to use single-channel textures as they experience the
best overall performance.

6. Performance

6.1. Methodology. We test the performance of our library with three separate
sets of operations. First, we compare per-element function performance to that
of the Intel VML. Second, we compare single matrix multiplication to that of the
Intel BLAS library. Finally, we compare implementations on non-negative matrix
factorization using our library and the Intel Math Kernel Library.

We do not discuss the implications of the time to transfer data to and from
the GPU over the AGP bus. Our implementation focuses on providing support for
iterative algorithms and makes the assumption that once the data has been moved
to the GPU, the amount of computation will be significant enough that the transfer
time over the AGP bus will be small in comparison. Data is transferred over the
bus only as requested by the user, so any iterative algorithm implemented through
the library would only transfer data to the GPU at the beginning and retrieve it at
the end. Also, as we strive to provide a means of connecting separate specialized
computational kernels on the GPU through a set of general purpose routines, the
goal is to keep the data on the GPU for as much of the computation as possible.

6.2. Vector Math. For testing vector math performance we benchmark the per-
formance of implementations of all of the functions provided in the Intel VML
against the native functions over a range of vector sizes. Revising the predictions
of Equation 1 to take into account our implementation details, such as 1 channel
textures, we have

1floats/pixel ∗ 8pixels/clock ∗ 350Mhz = 2.8GFlops

potential performance. Considering the simplest per-element operation involves
one arithmetic operation and one texture fetch to provide data for it, the realistic
performance maximum would be half that value: 1.4 GFlops.

A summary of the average performance for each function is included in Table 5.
The MFlops reported include the dual fragment rasterization overhead as well as

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 19

Function CPU MFlops GPU MFlops Ratio Count

InvSqrt 92.07 1245.19 13.53 3
Inv 136.28 1258.83 9.24 3
Log10 98.52 1003.73 10.19 4
Exp 63.39 1021.16 16.11 4
Div 102.41 729.11 7.12 5
Sqrt 101.04 729.15 7.22 5
Pow 3.54 669.58 189.21 6
Sinh 2.01 394.74 196.11 8
Cosh 43.74 391.10 8.94 8
Tanh 37.70 300.45 7.97 10
Cos 54.40 269.07 4.95 11
Sin 55.74 268.34 4.82 11
Tan 35.68 190.04 5.33 15
Acos 0.72 189.73 263.21 16
Asin 0.63 176.28 281.30 16
Atan 27.09 100.82 3.72 28
Atan2 23.51 87.42 3.72 32

Table 5. Vector math performance of CPU and GPU

CPU overhead. The dual fragment occurs because the two triangles that comprise
the quad for rendering the operation both generate fragments for pixels that overlap
that edge, so WH + max(W,H) operations occur to process WH elements. CPU
overhead is a result of setting all of the API state and rendering the per-element
function. The rightmost column shows the instruction counts for per-element func-
tions. The simplest functions, Inv, InvSqrt, Exp, and Log10, all come quite close
to the maximum possible performance of the GPU for our current implementation.
The observed performances are closely correlated to the number of instructions re-
quired to perform the operation. The stream processing model maximizes the cache
usage and effectively hides the memory hierarchy, ensuring the amortized time of a
texture fetch is one clock.

While the CPU overhead to render a function is small, usually on the order
of 0.0003 seconds, it makes a noticeable impact on the observed performance. In
terms of performance in MFlops, the CPU overhead is uniformly distributed across
all of the elements on which it operates, so the number of elements must be large
enough such that the CPU overhead per element is much smaller than the amount
of time required to compute the result for that element. Figure 7 displays the
performance of CPU and GPU in regards to the number of elements operated
upon. As expected the CPU performance is nearly constant over any number of
elements. GPU performance, on the hand, starts out near zero, increases rapidly,
then levels off. The CPU overhead becomes sufficiently small with respect to the
time to perform the operation that it is effectively zero, occurring at approximately
5× 105 elements.

While somewhat noticeable in unary functions of Figure 7, the outliers in binary
functions are very obvious. While the same outliers are consistent between oper-
ations and over multiple sets of similar operations, they change in regards to the

20 MATTHEW M TRENTACOSTE

Sqrt Sinh

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600

700

800

900
CPU
GPU

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600

700

800

900
CPU
GPU

Div Pow

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600

700

800

900
CPU
GPU

0 1 2 3 4 5

x 10
6

0

100

200

300

400

500

600

700

800

900
CPU
GPU

Figure 7. Comparison of CPU and GPU performance
The top row contains results for two unary per-element functions, (a)
Sqrt, (b) Sinh. The bottom row contains results for two binary per-
element functions, (c) Div and (d) Pow.

ordering of operations. While the linAlgShader object handles high level memory
management, it plays no roll in determining the layout of textures and buffers on
the GPU. Depending on the order that objects are created and destroyed, the tex-
ture fetch performance varies greatly. Depending on the size of textures, performing
the same sequence of operations in forward and reverse, can alter the performance
by almost a factor of 2. This is further complicated by the binary functions shown
in Figure 7, as they require fetches to two separate texture to perform the given
operation and cause a greater percentage of cache misses. Comparing Div and Pow
from Figure 7, we see that the same outliers appear in both, but are somewhat less
divergent in Pow. Looking back on the number of instructions we see that Div takes
5 instructions to complete, while Pow takes 6. The difference in texture fetch times
decreases as the ratio of arithmetic to texture fetch instructions increases. While
for any algorithms that can fit all data and temporary matrices and most other

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 21

usage patterns, the performance matches the trend, we include this to emphasize
that intelligent memory allocation patterns are still beneficial.

The asynchronous nature of the GPU makes the task of benchmarking perfor-
mance, or simply determining how long an operation took to complete, a compli-
cated task. We have verified our results for per-element functions in several ways.
The more straightforward method is the utilization of a DirectX 9 Query object to
request from the graphics card how many pixels were rendered from a given set of
API calls. The card keeps track of the rasterization process and returns the number
upon completion of the task. Thus, the time to execute a given operation is the
time to render with the query minus the time to use a query without rendering any
geometry. This makes assumptions in how the driver operates, and while it yields
accurate results, is not guaranteed to do so.

The other method is based on some assumptions of the architecture of the
hardware. Even if a function call returns immediately, the GPU still has to work
for some period of time to complete the requested operation. Taking advantage of
the pipeline architecture of the hardware, we can selectively create bottlenecks to
determine performance. We need to arrange our task in a way that the bottleneck
occurs in the part of the pipeline we wish to benchmark. In this case, that fragment
shader is the obvious bottleneck as only 4 vertices are needed for a full-screen quad
that will generate thousands of fragments. Below a certain point, the overhead
of the API takes more time than the operation. As the rate and magnitude of
operations issued increases, so does the apparent performance of the GPU until
it reaches the point where the bottleneck is no longer the CPU, but the fragment
shader to perform the computation. We can divide the time to issue a render by
the number of operations completed in that span of time to get the performance
of the GPU. This asynchronous operation has a major benefit in the fact that it
enables the creation of semaphores to allow the CPU to continue working on other
computations concurrent to the GPU. While the current library does not offer
semaphore functionality, if being used interactive at a (relatively) slow rate such as
by a human, the library appears to perform computations instantaneously because
functions return at once so.

6.3. Matrix Multiplication. Conceptually, a matrix multiplication is nothing
more than a per-element function that multiplies two numbers and adds them to a
third repeatedly. The difference is that the texture fetches required for each step of a
matrix multiply are not as cache-friendly as those used by the vector math function.
We implement matrix multiplication as the application of z per-element functions
on input matrices of x×z and z×y. In addition to the performance considerations
mentioned in regards to per-element operations, matrix multiplication has more
details that affect the observed performance.

The primary goal of the stream computing model is to hide cache latency. There
are a collection of reasons why matrix multiplication either breaks this model, or
adversely affects performance. The fact that the buffer can be used as a render tar-
get currently requires the texture to be stored unswizzled, causing texture fetches to
slow down and the bi-directional locality to be lost. Matrix multiplication requires

22 MATTHEW M TRENTACOSTE

3n3 reads and n3 writes in it most naive form when the manual accumulation is in-
cluded. As mentioned in Section 3.2, the method of rendering the multiply requires
that one of the matrices be transposed, meaning that one of the textures will be
accessed down one column at a time while its cache lines only extend sideways, so
it will have a cache miss when it fetches a texel.

There is also the added performance concern that the CPU has to manually
perform the state changes of the accumulation as opposed to having the post-
fragment blending functionality perform them. This requires more room on the
GPU, causes more cache misses, and requires significant CPU work. The CPU
must change the state and render the next step, which requires considerable work
for each message sent to the GPU. The CPU is tied up most of the time managing
the state of multiply render when it should be free to work on other tasks.

GPU CPU

10
0

10
2

10
4

10
6

10
8

0

200

400

600

800

1000

1200

1400

Number of elements processed (x*z + z*y)

M
F

lo
ps

10
0

10
2

10
4

10
6

10
8

0

200

400

600

800

1000

1200

1400

Number of elements processed (x*z + z*y)

M
F

lo
ps

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

Number of elements processed (x*y*z)(1/3)

M
F

lo
ps

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

M
F

lo
ps

Number of elements processed (x*y*z)(1/3)

Figure 8. CPU and GPU matrix multiplication performance
The results are displayed in two formats, with the top row showing (a)
GPU and (b) CPU performance as a variable of the number of input
elements, and the bottom row showing (c) GPU and (d) CPU perfor-
mance as a variable of total computational. Note the logarithmic scaling
of the x-axis in (a) and (b).

There are several means of alleviating these problems. The first is to render less
passes with more texture fetches per pass. While this results in longer shaders, the

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 23

accumulation texture fetch only occurs once per shader, so its cost is amortized
across all of the texels rasterized that step. With less passes to be rendered, the
CPU would be free to perform other tasks. A more ideal solution would be possible
if the swizzle of the buffers used as textures and rendertargets was user-controllable.
All of the user matrices would be swizzled for fast reads, and all of the temporary
textures would be unswizzled for fast writes. If more than one set of texels was
being fetched, the accumulation texture could be fetched first and other fetches
could occur until all of the data is there, effectively hiding the longer read time of an
unswizzled texture, but still being able to perform a fast write to the buffer. Then,
completing the render with a render to the destination buffer. These variations
are all attempts at reducing the constant factors regarding various aspects of the
process. A more robust solution would include altering the data representation and
method of rendering, which will be discussed in detail later.

Figure 8 compares performance on matrices of dimensions x×z and z×y for all
combinations of powers of two in the possible range of texture sizes, x, y, z = 2n :
n ∈ [1, 2048]. The set of data is very complex with large changes in the relative per-
formance of CPU and GPU. Yet, several key differences between implementations
can be observed.

First, the GPU requires an order of magnitude more input elements than the
CPU before it begins to exhibit noticeable performance. This is due to the setup
work required to validate the data and perform all the necessary state setup. This
is very similar to the behavior observed with vector math functions, where perfor-
mance was low until a sufficiently large number of operations occurred to absorb
the overhead work.

Second, we can see from the distribution of values, that at larger numbers of
elements; the CPU performance converges to a singular value, but the GPU exhibits
several strata of performance levels. These correspond to different ratios of oblong
matrices. This is a result from the number of cache misses for a given ratio of input
matrix dimensions. The access pattern of the naive multiplication implementation
results in good cache usage accessing the first matrix as it is read row-wise, same as
the data alignment, resulting in n−1

n cache hit ratio for n texels loaded per memory
access. The access pattern for the second matrix yields poor cache usage as it is
read column-wise, resulting in 1

n cache hit ratio. As x or y increases in relation
to the other, the number of cache misses increases also. This causes the observed
performance of combinations of dimensions resulting in the same total number of
computations to be sorted based on how close the ratio of x : y is to 1 : 1.

Third, due to the overhead of state switching required to perform a multiplica-
tion, increases in z have a larger effect on performance than changes in x and y.
Changing x or y by a factor of 2 results in a factor of 2 change in performance,
while changing z by a factor of two results in a factor of 4 change in performance.

All of these considerations can been observed in the following example, the GPU
has a 6.8× the performance of the CPU when a 2048×2 by 2×2048 multiplication
is performed compared to .08× the performance of the CPU when a 2 × 2048 by

24 MATTHEW M TRENTACOSTE

2048× 2048 multiplication is performed compared to 1.49× the performance of the
CPU when a 2048× 2048 by 2048× 2 multiplication is performed.

Kruger and Westermann[16] provide a library with similar functionality to that
of our own. They differ on how to represent matrices, opting to store an N × N
matrix Q as N separate textures each containing one of the diagonals of Q. Each
of the diagonals is blocked into a square texture to improve cache locality. This
works well for the sparse case because they can simply not store or render empty
diagonals, but requires them to perform N state changes for a dense matrix. While
they do not implement matrix-matrix multiplication, the implications of such a
storage scheme can be observed when comparing times. For a 4096× 4096 matrix-
vector multiply, their library took .23 seconds. Our implementation performed the
same operation in .35 seconds when the shared dimension of the matrices was used
and 4096 state changes were made. It makes sense that our performance be lower
since we store a vector a long texture, so the cache locality on accessing that is
poor. On the other hand, we achieved a time of .022 seconds for the case requiring
only one state change. This shows that state changes to take up a considerable
amount of the total rendering time, and should be used only when they offer the
possibility to save work other places, such as in the sparse case.

6.4. Non-Negative Matrix Factorization. The process below identifies the ac-
tual steps implemented in both on the CPU and on our GPU library to perform
non-negative matrix factorization. It performs the exact same steps as Equations
5, 6, 7, but it written in a more iterated form.

Initialize U ← m× k matrix of strictly positive random entries
Initialize V ← n× k matrix of strictly positive random entries

repeat

Un1 = [un1(i, j)] ← FU

Un2 = [un2(i, j)] ← UVTU

Un = [un(i, j)] ←
[

un1(i, j)

un2(i, j)

]

Vn1 = [vn1(i, j)] ← FTU

Vn2 = [vn2(i, j)] ← VUTU

Vn = [vn(i, j)] ←
[

vn1(i, j)

vn2(i, j)

]

U = [u(i, j)] ← [un(i, j)× un(i, j)]

V = [v(i, j)] ← [vn(i, j)× vn(i, j)]

U = [u(i, j)] ←
[

u(i, j)∑M
r=1 u(r, j)

]

until U and V converge

Figure 9. Iterative NMF algorithm

Complex repeating operations such as these are the rationale for caching tem-
porary matrices. NMF must run many times and there is no need to create and
destroy temporary objects used for a specific step if they can be saved and used

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 25

for the next step. Every texture in an iterative step is either M ×K, N ×K, or
M × N with the exception of a single K × K. The same step can use a cached
matrix every iteration, as well as multiple steps of the same iteration sharing the
same cached matrices. Caching to reduce overhead also works to prevent the ob-
served fragmentation in GPU memory that was adversely affecting vector math
performance.

To test performance, we chose a subset of one of several publicly available col-
lections of faces for evaluating facial recognition algorithms. M ,N ,K were chosen
to be 361,1024,144, which is to say we have 1024 images, each with 361 pixels (a
resolution of 19 × 19) and seek to represent the subset we chose using 144 basis
functions, each of 19× 19 pixels.

Figure 10. Evolution of UV T approximation of images
The top images of 4 faces, with exception of the rightmost image,
are linear combination of that part of UV T that contains those
faces after the given number of intervals. The bottom images are 4
adjacent basis images and how they evolve over time from random
noise to representing specific details.

The observed performance over 10, 000 iterations was that the CPU implemen-
tation using Intel MKL libraries took 162 ms per iteration totaling 1606.8 secs,
while our library took 100 ms per iteration totaling 994.2 secs. The time to execute
an iteration remained constant for both CPU and GPU implementations as the
workload did not vary from iteration to iteration. Figure 10 depicts the progres-
sion of some of the basis matrices and the approximation yields compared with
the original of those faces. Even though our library implementation is more sensi-
tive to changes in access patterns than more complicated representations and often
likely to perform worse than the CPU, we show that it is still possible to obtain
respectable results.

7. Discussion

We summarize our findings in a set of succinct evaluations of the current state
of graphics and hardware and suggestions and guidelines for improving upon it.

26 MATTHEW M TRENTACOSTE

7.1. Representation. We specifically chose the simplest representation of matri-
ces for our library for straightforward identification of performance bottlenecks of
the hardware, fully aware of the bottlenecks that would result from that choice.
This was especially pertinent with regards to the implications of the representation
on texture fetch cache misses. The primary goal of the stream processor is to hide
the memory hierarchy, and whereever it fails at this goal the performance gains
over a standard computing model suffer.

The ideal choice for a representation would ensure both good cache usage for all
input matrices and require as little intervention from the CPU as possible. Unfor-
tunately in practice these two are mutually exclusive as representations of matrices
with better cache coherency usually rely on blocking the data into sub-matrices.
So, if any given matrix is represented by N sub-matrices, a matrix multiplication
will require on the order of N2 instructions by the CPU to perform the multiplica-
tion. While no one solution can handle all cases, it appears that increasing CPU
cycles to lessen GPU memory bandwidth requirements is the better performing
choice over the majority of tests. Also, packing the diagonals of matrix into a set
of sub-matrices seems to be quite effective in terms of cache utilization.

If the decision has been made to block matrices to increase cache performance,
then it is only logical to choose methods for other parts of the multiply operation
that can alleviate more bottlenecks. Divide-and-conquer algorithms are fundamen-
tally based on the separation of large chunks of data into smaller portions. Many
matrix-multiplication algorithms exist that have a lower asymptotic running time
than O(n3), but the best known is Strassen’s Algorithm. It starts with the idea that
two N ×N matrices are multiplied by splitting them each into 4 parts, multiplying
the respective parts, and recursing the 4-way split onto each of those multiplica-
tions. The results are summed together by N2 additions. This yields a recurrence
equation of

T (n) = 8T (n/2) + Θ(n2)(8)

which has the solution of O(n3), no better than the naive implementation already
in place. What Strassen discovered was there a way to accomplish the same thing
using more additions but only 7 recursive multiplications, yielding the recurrence

T (n) = 7T (n/2) + Θ(n2)(9)

T (n) = Θ(nlog 7)
T (n) = O(n2.81)

We omit the details of how this is accomplished, but will say that through some
rearrangement of terms, we can trade a matrix multiplication for several vector
addition and subtraction operations which are much less expensive than a full
(n/2)× (n/2) multiplication.

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 27

The bottom line is that there are methods which offer substantial performance
gains over our implementation. It was never our aim to provide the implementation
offering the best performance, merely demonstrate that the GPU is robust enough
to offer performance benefits over the CPU without relying on it for all of the
computation of connecting various kernels.

7.2. CPU vs. GPU. The question all of this comes down to, “Is it worth per-
forming computation on the GPU?” One could argue that there is currently less
precision available, less control over the internal workings, and a only a small subset
of operations which are currently applicable on graphics hardware. And should one
choose to use graphics hardware, there is only a marginal benefit in performance
for what will probably be an ordeal to port code.

Some might argue, that at this time, the answer to implementing general com-
putation on graphics hardware does not provide the performance gains to justify
the large switch in current computational methods. While this may be true, few
will argue that it will remain true for long. The stream processor model fuels the
Moore’s Law Cubed increase in performance touted by every graphics card man-
ufacturer. As silicon space doubles, a stream processor can double the number of
parallel pipelines and get double performance while a standard CPU can add more
cache and get a slight 15% speed increase. While the GPU and CPU are roughly
comparable in performance at this moment for most kernels, in a year graphics
hardware will be 4× faster compared to CPU’s which will be 1.6× faster. This
disparity of performance will continue to increase, and as graphics hardware gains
more functionality the implementation of other algorithms on the GPU will not
only be feasible, but desirable.

7.3. Future Work. Future work stemming from this research can grouped into
two main categories: expanding the functionality of the matrix library, and devel-
oping better interfaces for use in programs that use graphics hardware for general
computation.

There are many avenues down which we can expand the functionality of the
matrix library. A better storage representation would be a starting point using a
divide and conquer multiplication step. The high-level shading language elements
can be better integrated into the API. There is also a need for optimized support
for sparse matrices and other specific forms. Gather and scatter operators can
be implemented through dependent texture reads. An unforseen problem arises if
the library is used in an interactive setting such as a plug-in for a mathematical
computation package. During heavy matrix multiplication loads, the workstation
would be begin to lag. Our first thought was that the resource management for
issuing state changes were consuming all of the CPU’s power. As it turns out, the
lag appears to be caused by the matrix using the entirety of the memory bandwidth
on GPU memory thus significantly slowing down the rate of blitting data to the
screen. Something akin to thread priority in an operating system kernel needs to
be included in the library otherwise it will consume all bandwidth to the detriment
of the user.

28 MATTHEW M TRENTACOSTE

The interfaces through which to program the GPU are fairly inadequate for our
purposes. Graphics APIs such as DirectX and OpenGL perform the desired task,
but require a great deal of abstraction. There needs to be a new kind of API,
not designed for graphics but for general computation that can be extended for
graphics. The API and drivers assume that all use of graphics hardware will be for
real-time graphics. While simplifing the assumptions of developers, it makes cer-
tain operations using graphics hardware more obfuscated. While adding OpenGL
extensions specifically designed for easier general computation would be a plus, we
still think it is missing the big picture. The GPU is no longer a piece of equipment
merely for generating imagery. It has the opportunity to become a full-fledged co-
processor alongside the CPU, and should be programmed as such. Implementing
general libraries on top of existing graphics APIs is more problematic in the long
run. It makes more sense to think of a texture as a kind of array, as opposed to an
array as a kind of texture.

The difficulty in benchmarking specific features is due to: the asynchronous op-
eration of the GPU and the rapid rate at which new hardware is released. Together
these issues make detailed material concerning performance aspects of graphics
hardware is almost non-existent. What the real-time graphics community as a
whole needs is a utility that can automatically benchmark a piece of graphics hard-
ware. This would be different from any multimedia benchmarking utility currently
available in that it would not try to assign a number based on performance of ren-
dering a scene, but would try to create a relational table mapping between API flags
and hardware performance by specifically generating cases to cause bottlenecks to
map the GPU architecture. Therefore once a programmer had run a utility on a
piece of hardware, they could see the effects various changes had in the performance
of the card and eliminate bottlenecks. This would give programmers the informa-
tion they need to optimize for hardware; information they would otherwise have no
means of obtaining about other than by trial and error.

8. Conclusion

In this work, we have described a simple framework for the implementation of
numerical algorithms on graphics hardware. Forgoing one of several potentially
more efficient ways to represent data when stored and operate upon it, we chose
a simple method as a means of observing the performance displayed under various
sets of circumstance without the need to sort through the idiosyncracies of a more
complicated implementation.

It is plain to see that while the GPU is a streaming processor, the fragment
shader’s ability to perform random look into textures breaks the architecture to a
degree. The goal of a streaming processor is to hide the memory hierarchy and
depending on the access patterns performed by fragment shader. This is more of
concern to the user now that dependant texture reads are possible and any value
can be issued at the coordinates for a textures fetch. The new-found freedom in
what new computation options are available comes at the cost of needing to be
more cautious about the performance ramifications they carry.

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 29

Even though high precision floating point available in the shader pipelines and
storage are a new addition to commodity graphics hardware, they have opened
up many new means in which to utilize the hardware. There is a lack of much
publicly available information concerning the design specifics of modern graphics
processors, and even less information explaining how a chain of events can cause
the performance bottlenecks we observed. While we have gained much insight in
regards to the internal workings of the GPU and how it relates to the API with
regards to fragment shades, texturing, and memory access, we have must gain
experience with new cards through trial an error due to the lack of a a clear and
logical approach for gaining such an experience.

30 MATTHEW M TRENTACOSTE

References

1. Anthony A. Apodaca and M. W. Mantle, Renderman: Pursuing the future of graphics, IEEE
Computer Graphics & Applications 10 (1990), no. 4, 44–49.

2. Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schrder, The gpu as numerical simu-
lation engine, SIGGRAPH 2003 Conference Proceedings, Annual Conference Series, ACM
Press/ACM SIGGRAPH, 2003.

3. Cem Cebenoyan and Matthias Wloka, Optimizing the graphics pipeline, Presentation, nVidia,
March 2003.

4. Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu, and Radek Grzeszczuk, Light field
mapping: Efficient representation and hardware rendering of surface light fields, SIGGRAPH
2002 Conference Proceedings (John Hughes, ed.), Annual Conference Series, ACM Press/ACM
SIGGRAPH, 2002, pp. 447–456.

5. U. Diewald, T. Preusser, M. Rumpf, and R. Strzodka, Diffusion models and their accelerated
solution in computer vision applications, 2001.

6. Matteo Frigo and Steven G. Johnson, FFTW: An adaptive software architecture for the FFT,
Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (Seattle, WA), vol. 3,
May 1998, pp. 1381–1384.

7. David Guillamet and Jordi Vitria, Classifying faces with non-negative matrix factorization.
8. Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo Lastra, Physically-based

visual simulation on graphics hardware, Proceedings of the conference on Graphics hardware
2002, Eurographics Association, 2002, pp. 109–118.

9. John C. Hart, Perlin noise pixel shaders, Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on on Graphics hardware, ACM Press, 2001,
pp. 87–94.

10. Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver, Fast com-
putation of generalized Voronoi diagrams using graphics hardware, Computer Graphics 33
(1999), no. Annual Conference Series, 277–286.

11. M. Hopf and T. Ertl, Hardware accelerated wavelet transformations, 2000.
12. Matthias Hopf and Thomas Ertl, Accelerating 3D convolution using graphics hardware, IEEE

Visualization ’99 (San Francisco) (David Ebert, Markus Gross, and Bernd Hamann, eds.),
1999, pp. 471–474.

13. H. Igehy, M. Eldridge, and K. Proudfoot, Prefetching in a texture cache architecture, Pro-
ceedings of the 1998 SIGGRAPH / Eurographics Workshop on Graphics Hardware, 1998,
pp. 133–142.

14. Intel, Intel math kernel library reference manual, 2001.
15. Doug L. James and Dinesh K. Pai, Dyrt: Dynamic response textures for real time deformation

simulation with graphics hardware.
16. Jens Kruger and Rdiger Westermann, Linear algebra operators for gpu implementation of

numerical algorithms, SIGGRAPH 2003 Conference Proceedings, Annual Conference Series,
ACM Press/ACM SIGGRAPH, 2003.

17. E. Scott Larsen and David McAllister, Fast matrix multiplies using graphics hardware, Su-
percomputing, 2001.

18. Daniel Lee and H. Sebastian Seung, Algorithms for non-negative matrix factorization, NIPS,
2000, pp. 556–562.

19. Daniel D. Lee and H. Sebastian Seung, Learning the parts of objects by non-negative matrix
factorization, Nature 401 (1999), 788–791.

20. Aaron Lefohn and Ross Whitaker, A gpu-based, three-dimensional level set solver with cur-
vature flow, Technical report, University of Utah, December 2002.

21. Wei Li, Xiaoming Wei, and Arie Kaufman, Implementing lattice boltzmann computation on
graphics hardware, The Visual Computer (2001).

22. Erik Lindholm, Mark J. Kligard, and Henry Moreton, A user-programmable vertex engine,
Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
ACM Press, 2001, pp. 149–158.

23. Dinesh Manocha, Interactive geometric computations using graphics hardware, ACM SIG-
GRAPH, 2002.

24. William R. Mark and Kekoa Proudfoot, The f-buffer: A rasterization-order fifo buffer for
multi-pass rendering.

IMPLEMENTING PERFORMANCE LIBRARIES ON GRAPHICS HARDWARE 31

25. M. McCool, Smash: A next-generation api for programmable graphics accelerators, 2000.
26. Michael D. McCool, Zheng Qin, and Tiberiu S. Popa, Shader metaprogramming, Proceedings

of the conference on Graphics hardware 2002, Eurographics Association, 2002, pp. 57–68.
27. Microsoft, Directx 9 documentation, November 2002.
28. nVidia, Cg toolkit user’s manual, 1.1 ed., February 2003.
29. Mark Olano, Real-time shading languages, ACM SIGGRAPH, 2002.
30. John D. Owens, William J. Dally, Ujval J. Kapasi, Scott Rixner, Peter Mattson, and Ben Mow-

ery, Polygon rendering on a stream architecture, 2000 SIGGRAPH / Eurographics Workshop
on Graphics Hardware (2000), 23–32.

31. Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar, Interactive multi-pass pro-
grammable shading, Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing Co., 2000, pp. 425–432.

32. Kekoa Proudfoot, William R. Mark, and Pat Hanrahan, A real-time procedural shading system
for programmable graphics hardware, Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ACM Press, 2001, pp. 159–170.

33. Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan, Ray tracing on pro-
grammable graphics hardware, Proceedings of the 29th annual conference on Computer graph-
ics and interactive techniques, ACM Press, 2002, pp. 703–712.

34. Guennadi Riguer, Performance optimization techniques for ati graphics hardware with directx
9.0, Tech. report, ATI, March 2003.

35. Randi Rost, Opengl shading language, Presentation, 3DLabs, March 2003.
36. M. Rumpf and R. Strzodka, LEVEL SET SEGMENTATION IN GRAPHICS HARDWARE,

pp. 1103–1106.
37. Martin Rumpf and Robert Strzodka, Nonlinear diffusion in graphics hardware, pp. 75–84.
38. R. Strzodka, Virtual 16 bit precise operations on rgba8 textures.
39. Chris J. Thompson, Sahngyun Hahn, and Mark Oskin, Using modern graphics architectures

for general-purpose computing: A framework and analysis, International Symposium on Mi-
croarchitecture (MICRO), 2002.

40. C. Trendall and A. Stewart, General calculations using graphics hardware with applications
to interactive caustics, 2000.

41. Daniel Weiskopf, Matthias Hopf, and Thomas Ertl, Hardware-accelerated visualization of
time-varying 2d and 3d vector fields by texture advection via programmable per-pixel opera-
tions.

1322 S. Negley Ave., Pittsburgh, PA 15217

E-mail address: mmt@cmu.edu

